Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Эффекты высокой скорости счета

Часто используемые формулы статистики отсчетов | Доверительный интервал | Статистики и анализ изображения | Краткая история | Принцип работы гамма-камеры Ангера | Собственная эффективность | Эффективность коллиматора | Пространственное разрешение | Рассеяние в пациенте и коллиматоре | Собственная пространственная однородность |


Читайте также:
  1. Алгоритм расчета электромагнита переменного тока.
  2. Анализ и своевременность урегулирования сумм, учитываемых на счетах по учету дебиторской и кредиторской задолженности.
  3. Базами данных, необходимых для реализации проектов, - из расчета 95 про-
  4. Валютные счета за рубежом
  5. Валютные счета на территории РФ
  6. Ведущие виды расчета - это...
  7. Внешние эффекты (экстерналии) и их регулирование

Как отмечалось в главе 2, существенным недостатком сцинтилляционных детекторов с кристаллом NaI(Tl) является потеря части импульсов при высокой скорости счета вследствие эффекта наложения импульсов. Наложение импульсов, кроме того, приводит к одновременной регистрации двух событий (на самом деле отстоящих друг от друга на малый временной интервал) как одного события с амплитудой, отличающейся от обоих первичных событий. Если одно или оба события относятся к фотопикам, то тогда амплитуда нового события находится вне заданного интервала окна ААИ и событие будет отброшено, что приведет к потере отсчетов. Если, с другой стороны, "одновременно" регистрируются два фотона, испытавших комптоновское рассеяние, то они могут в сумме создать событие, эквивалентное по амплитуде фотопику, в результате событие будет зарегистрировано а пределах установленного окна ААИ. Но X -, Y - позиции события окажутся в изображении перемещенными куда-то в зону, расположенную между обоими событиями. Это вызывает искажение изображения. Таким образом, чрезмерно высокая скорость счета создает как потери в отсчетах, так и искажение изображения. На рис. 3.18 представлен пример изображения четырех секторного квадратного бар фантома при разных скоростях счета.

 

Рис. 3.18. Изображение четырех секторного квадратного бар фантома при разной скорости счета гамма-камеры: A – 10000 c-1; B – 100000 с-1[4] (повторить)

 

Данная проблема становится особо актуальной для динамических процедур ЯМ. В литературе проводились активные обсуждения по поводу методики измерения мертвого времени гамма-камер, связанные с тем, что сцинтилляционные камеры включают как парализуемые, так и непарализуемые цепи (см. глава 2). Эти системы имеют разные зависимости наблюдаемой скорости счета от скорости поступления входных импульсов (рис. 3.19). В результате обсуждения был одобрен метод расщепленного источника, предложенный Адамсом с коллегами [10]. Если мертвое время найдено, то скорость счета для парализуемой системы рассчитывается по формуле:

(3.22)

где nt – истинная скорость счета (т.е. скорость счета при пренебрежимо малом мертвом времени); n 0 – наблюдаемая скорость счета; τ – мертвое время, измеренное методом расщепленного источника.

В этом методе используются два источника 99mTc достаточно высокой активности, чтобы создать скорость счета (0,10/ τ) ± 20 % при размещении их снизу камеры. Сначала измеряется скорость счета от первого источника n 1, затем от двух источников, размещенных рядом друг с другом, n 12 и, наконец, от одного второго источника n 2. Мертвое время парализуемой системы находится из выражения:

(3.23)

Рис. 3.19. Зависимость регистрируемой скорости счета от входной скорости поступления импульсов для трех разных систем

 

Результат измерения τ зависит от доли счета в полном энергетическом спектре, которая включается в энергетическое окно, так как компоненты системы, участвующие в измерении мертвого времени, работают перед ААИ. Кроме того, значение мертвого времени зависит также от вклада рассеянного излучения.

В технических данных гамма-камеры обычно указывается наблюдаемая скорость счета для 20 % энергетического окна, при которой из-за мертвого времени теряется 20 % отсчетов. Другой часто специфицируемый параметр представляет скорость счета, при которой зависимость наблюдаемой скорости счета от активности источника приобретает отрицательный наклон. Эта величина является абсолютным пределом для прибора. В современных гамма-камерах эти величины находится в интервале 120000 – 170000 с-1 для 20 % потери счета и 350000 с-1 для абсолютного предела.

Следует упомянуть, что разработчиками было создано несколько вариантов гамма-камер, удовлетворительно работающих при существенно больших загрузках с помощью укорочения длительности импульсов (до 106 с-1, например в [11]). Однако это привело к ухудшению энергетического разрешения. Компания Филипс, разделив детектор на отдельные зоны довела допустимую загрузку до 4·106 с-1, однако данное решение существенно усложнило конструкцию гамма-камеры. Кроме того, эта модель разрабатывалась специально для регистрации аннигиляционных фотонов.


Дата добавления: 2015-10-24; просмотров: 64 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Нелинейность и ее коррекция| Многокристальные и полупроводниковые гамма-камеры

mybiblioteka.su - 2015-2024 год. (0.007 сек.)