Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ультразвуковая диагностика (УЗД).

Часть Ш. Интервенционная радиология | Рентгенодиагностика. | Описание (интерпретация) рентгенограмм | Основы ультразвуковой семиотики. | Рентгеновская компьютерная томография (КТ). | Технология визуализации при КТ. | Достоинства КТ. | Виды КТ. | Технология визуализации при МРТ. | Достоинства и недостатки МРТ. |


Читайте также:
  1. IV. Диагностика и лечение внутриутробных инфекций
  2. Андай лабораториялық зерттеу әдісі лимфо- және лимфобласттық емес лейкозды диф. Диагностика жасауға мүмкіндік береді ?
  3. Вопрос. Диагностика и развитие карьерной компетенции.
  4. ГЛАВА 2 ПСИХОТЕЛЕСНАЯ ДИАГНОСТИКА
  5. Глава вторая. Диагностика настроения — первая ступень когнитивной терапии
  6. Диагностика
  7. ДИАГНОСТИКА

3.1. Принцип УЗД. У льтразвуковая диагностика – метод визуализации органов и тканей с помощью ультразвуковых волн. В силу своей простоты, безвредности и эффективности широко применяется в медицине – особенно на ранних стадиях диагностического процесса.

3.2. Физика ультразвука. Звук - это механическая продольная волна, распространяющаяся в упругих средах (твердых, жидких, газообразных), в которой колебания частиц находятся в той же плоскости, что и направление распространения энергии. Звуковые колебания с частотой свыше 20 000 в секунду (20 КГц) называются ультразвуком. С диагностической целью применяют ультразвук с частотой от 2 до 20 МГц. В отличие от электромагнитных волн (к которым относится и рентгеновское излучение), для распространения звука необходима среда, т.е. волна переносит энергию, но не материю, в вакууме ультразвук не распространяется. Энергия диагностического ультразвука не превышает 0,05 Вт/см2, он практически не вызывает биологических эффектов. Высокочастотный диагностический ультразвуковой сигнал гасится воздухом, поэтому зона исследования покрывается гелем, что создает полноценную среду для передачи сигнала с датчика в ткани.

Принципы построения ультразвукового изображения. Ультразвук вырабатывается пьезокристаллом (в современных аппаратах их несколько), размещенным в датчике УЗ-сканера. Ультразвуковые волны в виде узкого пучка направляются в исследуемую часть тела и претерпевают изменения – ослабляются, поглощаются, преломляются, отражаются, интерферируют и т.д. Измененная ультразвуковая волна отражается от границы двух разных по плотности сред и возвращается к датчику.

Отраженные эхо-сигналы принимаются тем же пьезокристаллом датчика и после компьютерной обработки преобразуются в ультразвуковое изображение. При этом учитывается время возвращения сигнала и его интенсивность. Скорость распространения ультразвуковой волны разная в различных тканях – минимальная в воздухе – 348 м/с, максимальная в костной ткани – 4050 м/с, но при обработке поступившего сигнала используется усредненная скорость волны – 1540 м/с. Использование указанной величины позволяет осуществить калибровку диагностических приборов при измерениях. Разные ткани по-разному проводят ультразвук, а, значит, отраженные сигналы имеют различную интенсивность, их пространственное расположение геометрически подобно анатомическим структурам. Особенностью УЗИ является изображение среза органа, а не его проекции на плоскость, характерной для рентгеновского исследования. Соответственно, если ультразвуковой луч проходит через исследуемый орган мимо патологического очага, то на экране монитора изображения этого очага не получится. И наоборот, если патологический очаг, находясь вне органа, проецируется на него, то и на полученной эхограмма этот очаг будет выглядеть как бы «в органе».

Для улучшения качества изображения в ультразвуковой диагностике используют так называемые акустические окна – ткани и структуры, расположенные между ультразвуковым датчиком исследуемым объектом. Они должны соответствовать ряду требований:

- высокая звукопроводимость; оптимальное вещество для акустического окна – гомогенная жидкость, классический пример акустического окна – осмотр органов малого таза через наполненный мочевой пузырь;

- ткани не должны значительно рассеивать ультразвук;

- малое расстояние между датчиком и исследуемым объектом (кроме всего прочего, это позволяет использовать высокочастотные датчики с большей разрешающей способностью);

- ширина акустического окна должна быть больше исследуемого объекта или хотя бы сопоставима с ней.

Хорошими акустическими окнами могут быть печень или мышцы. В противном случае акустическое окно можно создать – наполнить, например, желудок жидкостью для осмотра поджелудочной железы или сместить датчиком петли кишечника для этих же целей.

 

 


Дата добавления: 2015-10-02; просмотров: 79 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Радионуклидная диагностика (РНД).| Основные методы УЗД.

mybiblioteka.su - 2015-2025 год. (0.01 сек.)