Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Содержательный (вероятностный) подход к измерению информации

Информатика как научная дисциплина | Информатизация. Компьютеризация. Роль информационной деятельности в современном обществе | Информационные революции. Индустриальное общество | Информационное общество. Информационная культура | Информационные ресурсы общества | Всякий ресурс, кроме информационного, после использования исчезает. | Информационные услуги и продукты. Этапы развития технических средств и информационных ресурсов | Информационные объекты различных видов | Универсальность дискретного (цифрового) представления информации. Дискретное (цифровое) представление текстовой информации | Универсальность дискретного (цифрового) представления информации. Дискретное (цифровое) представление графической информации |


Читайте также:
  1. a. Доступ к создаваемой государственными органами информации, которая защищена законодательством об интеллектуальной собственности
  2. C) Вставьте подходящее по смыслу слово или словосочетание
  3. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  4. II. СОДЕРЖАТЕЛЬНЫЙ РАЗДЕЛ
  5. А также степень доступности информации, хранящейся в нем.
  6. А теперь перейдем к тому, как же понять, что мужчина нормальный и подходит для длительных отношений?
  7. Алфавитный подход по формуле Хартли (для технических устройств - компьютера)

Существует два подхода к измерению информации: содержательный (вероятностный) и объемный (алфавитный).

Процесс познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т.д.). Получение новой информации приводит к расширению знания или к уменьшению неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.

Пусть у нас имеется монета, которую мы бросаем. С равной вероятностью произойдет одно из двух возможных событий – монета окажется в одном из двух положений: «орел» или «решка». Можно говорить, что события равновероятны.

Перед броском существует неопределенность наших знаний (возможны два события), и, как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим, что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных события, а после броска – только одно, то есть в два раза меньше.

Чем больше неопределенна первоначальная ситуация (возможно большее количество информационных сообщений – например, бросаем не монету, а шестигранный кубик), тем больше мы получим новой информации при получении информационного сообщения (в большее количество раз уменьшится неопределенность знания).

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

Существует формула – главная формула информатики, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

N = 2I

За единицу количества информации принимается такое количество информации, которое содержится в информационном сообщении, уменьшающем неопределенность знания в два раза. Такая единица названа бит.

Если вернуться к опыту с бросанием монеты, то здесь неопределенность как раз уменьшается в два раза и, следовательно, полученное количество информации равно 1 биту.

2 = 2 1

Бит – наименьшая единица измерения информации.

С помощью набора битов можно представить любой знак и любое число. Знаки представляются восьмиразрядными комбинациями битов – байтами.

1байт = 8 битов = 23 битов

Байт – это 8 битов, рассматриваемые как единое целое, основная единица компьютерных данных.

Рассмотрим, каково количество комбинаций битов в байте.

Если у нас две двоичные цифры (бита), то число возможных комбинаций из них:

22=4: 00, 01, 10, 11

 


 

Если четыре двоичные цифры (бита), то число возможных комбинаций:

24=16: 0000, 0001, 0010, 0011,

0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111

Так как в байте 8 бит (двоичных цифр), то число возможных комбинаций битов в байте:

28=256

Таким образом, байт может принимать одно из 256 значений или комбинаций битов.

Для измерения информации используются более крупные единицы: килобайты, мегабайты, гигабайты, терабайты и т.д.

1 Кбайт = 210 байт = 1 024 байт

1 Мбайт = 220 байт = 210 Кбайт = 1 024 Кбайт = 1 048 576 байт

1 Гбайт = 230 байт = 1 024 Мбайт

1 Тбайт = 240 байт = 1 024 Гбайт

 

Единицы измерения информации
Название Символ Символ ГОСТ Приставка
Десятичная Двоичная
байт В байт 100 20
килобайт kB Кбайт 103 210
мегабайт MB Мбайт 106 220
гигабайт GB Гбайт 109 230
терабайт TB Тбайт 1012 240
петабайт PB Пбайт 1015 250
эксабайт EB Эбайт 1018 260
зетабайт ZB Збайт 1021 270
йоттабайт YB Йбайт 1024 280

 

Проведем аналогию с единицами длины:

если 1 бит «соответствует» 1 мм, то:

1 байт – 10 мм = 1см;

1 Кбайт – 1000 см = 10 м;

1 Мбайт – 10 000 м = 10 км;

1 Гбайт – 10 000 км (расстояние от Москвы до Владивостока).

Рассмотрим следующие примеры:

страница учебника содержит приблизительно 3 Кбайта информации;

1 газета – 150 Кбайт.


 


Дата добавления: 2015-10-02; просмотров: 80 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Подходы к понятию информации| Объемный (алфавитный) подход к измерению информации

mybiblioteka.su - 2015-2024 год. (0.007 сек.)