Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Общие требования к проведению измерений

ТРЕБОВАНИЯ К ИЗМЕРЕНИЯМ. УЧЕТ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ | I. ПРОГРАММА ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ ЭЛЕКТРОУСТАНОВКИ ЗДАНИЯ | II. ПРОГРАММА ИСПЫТАНИЙ ЭЛЕКТРОУСТАНОВКИ ЗДАНИЯ ДЛЯ ЦЕЛЕЙ СЕРТИФИКАЦИИ | Заземляющие устройства и системы уравнивания потенциалов | Сечения РЕ-шин | Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника | Распределительные устройства | Электропроводки | Внутреннее освещение | ОБРАБОТКА ДАННЫХ И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПРОВЕРКИ |


Читайте также:
  1. HTML: ОБЩИЕ СВЕДЕНИЯ.
  2. I. ОБЩИЕ ПОЛОЖЕНИЯ
  3. I. ОБЩИЕ ПОЛОЖЕНИЯ
  4. I. ОБЩИЕ ПОЛОЖЕНИЯ
  5. I. ОБЩИЕ ПОЛОЖЕНИЯ
  6. I. ОБЩИЕ ПОЛОЖЕНИЯ
  7. I. ОБЩИЕ ПОЛОЖЕНИЯ

Для измерения сопротивления заземлителей создается искусственная цепь протекания тока через испытываемый заземлитель.

Для этого на некотором расстоянии от испытываемого заземлителя располагается вспомогательный заземлитель (токовый электрод), подключаемый вместе с испытываемым заземлителем к источнику напряжения.

Для измерения падения напряжения на испытываемом заземлителе при прохождении через него тока в зоне нулевого потенциала располагается зонд (потенциальный электрод).

В качестве вспомогательного заземлителя и зонда могут применяться стальные неокрашенные электроды диаметром 12 - 20 мм длиной 0,8 - 1 м с болтами и барашковыми гайками для присоединения проводов.

Точность измерения сопротивления заземлителей зависит от взаимного расположения испытываемого и вспомогательного заземлителей, а также от расстояния между ними.

Схемы расположения электродов вспомогательного заземлителя и зонда относительно испытываемого заземлителя показаны на рис. 1, 2 (для сложных заземлителей) и рис. 3 (для одиночных заземлителей).

Для заземлителей, состоящих из вертикальных электродов, расположенных в ряд и объединенных горизонтальной полосой, в качестве размера «D» следует принимать длину полосы.

Размер «а» следует принимать в зависимости от размера «D», исходя из следующих соотношений:

D (м) >40 10 < D < 40 <10
а (м) ³D ³40 ³20

При измерении сопротивления одиночных вертикальных заземлителей длиной до 6 метров следует применять схемы расположения электродов, изображенные на рис. 3, с указанными между ними расстояниями.

Для заземлителей длиной свыше 6 метров расстояние между электродами следует принимать не менее 3 l, где l - длина вертикального заземлителя.

Относительная погрешность измерения, обусловленная уменьшенными расстояниями между электродами при измерениях по схемам, приведенным на рис. 3, не превышает 5 %. Направление разноса электродов нужно выбирать таким образом, чтобы электроды не оказались ближе 10 м от подземных металлических конструкций (кабели, трубопроводы, заземлители опор ВЛ и т.п.). В некоторых случаях при наличии большого количества подземных коммуникаций может потребоваться несколько измерений при различных направлениях лучей и различных расстояниях «а» и «b». Из нескольких измеренных значений в качестве действительного значения принимают наихудший результат.

Рис. 1. Схемы расположения электродов при измерении сложных заземлителей (двухлучевая схема)

Рис. 2. Схемы расположения электродов при измерении сложных заземлителей (однолучевая схема)

Рис. 3. Схемы расположения электродов при измерении одиночных вертикальных заземлителей

где: Rx - испытываемый заземлитель;

Rв - вспомогательный заземлитель (токовый электрод);

Rз - зонд (потенциальный электрод);

b ³ 3L (L - длина вертикального заземлителя).

Для некоторых приборов указанные расстояния могут отличаться от приведенных, что указано в данной Методике (п. 4.2; 4.3).

Полный комплект принадлежностей для производства работ по замерам сопротивления заземлителя (П4126М) должен состоять:

- 4 - 6 электродов (Rв и Rз), заостренных с одного конца или со спиралью типа «буравчик», а со второго конца - с поперечными рукоятками для ввертывания их в грунт, а также с болтами и гайками-барашками;

- два барабана гибкого медного провода типа ПВГ (ПВ-2) сечением 1,5 - 2,5 мм2 и длиной 100 - 120 м;

- гибкий провод типа ПВГ (ПВ-2) - 5 - 10 метров для подсоединения измерителя к заземлителю;

- рулетка 10 - 20 метров;

- молоток или кувалда весом 2 - 5 кг;

- напильник для зачистки контактов.

Электроды вворачиваются или забиваются в плотный грунт (не насыпной) на глубину не менее 0,5 метра.

В грунтах с большим удельным сопротивлением (например, песок) места, где нужно забивать вспомогательные заземлители, уплотняют или увлажняют водой, раствором соли или кислоты.

Количество штырей в измерительном (вспомогательном) электроде Rв зависит от удельного сопротивления поверхностного слоя земли.

В сухих, песчаных и мерзлых грунтах может потребоваться несколько соединенных электродов.

Для устройства потенциального электрода (зонда Rз) в большинстве случаев достаточно одного штыря. При измерении сопротивления заземления опор линии электропередачи, соединенных между собой грозозащитным тросом, последний должен отсоединяться от испытываемой опоры.

Сопротивление заземлителя не должно превышать нормируемого значения в любое время года.

Для получения максимально возможного значения на протяжении года (при наибольшем промерзании почвы зимой и высыхании летом) измеренные значения сопротивления должны быть умножены на поправочный коэффициент К, т.е. расчетное значение сопротивления заземлителя определяется из выражения:

R = Rизм × К.

Учитывая, что ПТЭЭП 2003 года предписывают измерять сопротивление заземляющих устройств в период наибольшего высыхания грунта, что невозможно при приемосдаточных и сертификационных испытаниях и таблица поправочных коэффициентов, определенных ПЭЭП 1993 г. (таблица 40 приложения 1.1) в ПТЭЭП 2003 г. отсутствует, в данной ситуации целесообразно следующее:

- воспользоваться указанной таблицей, как зарекомендовавшей себя достаточно достоверными данными поправочных коэффициентов (К);

- на основе обработки достаточного количества статистических данных определить коэффициенты приведения результатов измерений Rзy к условиям наибольшего высыхания грунта.

Величины коэффициента К по ПЭЭП 1993 г. приведены в таблице 8.

К1 применяется, если земля влажная, моменту измерения предшествовало выпадение большого количества осадков, или после весеннего паводка.

К2 - если земля нормальной влажности.

К3 - если земля сухая, количество осадков ниже нормы.

При разветвленной заземляющей сети измерения производят раздельно: сопротивление заземлителей и сопротивление заземляющих проводников, т.е. металлической связи корпусов электрооборудования с контуром заземления.

При замерзшем грунте или нахождении заземлителя ниже глубины промерзания К = 1.

При приемо-сдаточных испытаниях электроустановок зданий для повторных заземлений PEN- (РЕ)-проводников питающих сетей на вводах в здания этот коэффициент можно не учитывать, так как сопротивление повторных заземляющих устройств PEN- (РЕ)-проводников не нормируется (за исключением повторных заземлений ВЛ). При этом периодические измерения сопротивления этих заземляющих устройств в процессе эксплуатации следует производить в тех же климатических условиях (в то же время года) и по той же схеме измерения, что и при приемо-сдаточных испытаниях.

В таблице 8 приняты следующие обозначения:

t - глубина расположения в земле верхней части заземлителя;

S - площадь контура или сетки;

n - количество электродов контура;

l - длина горизонтальной полосы или вертикального заземлителя.

Таблица 8

(ПЭЭП табл. 40)


Дата добавления: 2015-10-24; просмотров: 86 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Объем и сроки испытания заземляющих устройств| Измерение сопротивления заземляющих устройств прибором М416

mybiblioteka.su - 2015-2024 год. (0.011 сек.)