Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Двухмерная линейная модель корреляционного и регрессионного анализа (однофакторный линейный корреляционный и регрессионный анализ)

Экстраполяция в рядах динамики и прогнозирование | Индексы и их классификация | Общие индексы количественных показателей | Общие индексы качественных показателей | Индексы средних величин | Среднемесячная заработная плата и число работников | Базисные и цепные индексы | Система взаимосвязанных индексов. Факторный анализ | Данные о продаже товаров | Количество себестоимость произведенной продукции |


Читайте также:
  1. A. Корреляционный анализ.
  2. III.2.2. Ход выполнения анализа турбидиметрическим методом
  3. Quot;Элементарная модель" типа ИМ.
  4. XXII. Модель "К" и отчаянный риск
  5. XXII. Модель «К» и отчаянный риск
  6. А) Ориентация на модель мышления точных (естественных) наук
  7. Абсолютная линейная невязка замкнутого теодолитного хода

 

Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного признака х на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ. Овладение теорией и практикой построения и анализа двухмерной модели корреляционного и регрессионного анализа представляет собой исходную основу для изучения многофакторных стохастических связей.

Важнейшим этапом построения регрессионной модели (уравнения регрессии) является установление в анализе исходной информации математической функции. Сложность заключается в том, что из множества функций необходимо найти такую, которая лучше других выражает реально существующие связи между анализируемыми признаками. Выбор типа функции может опираться на теоретические знания об изучаемом явлении, опыт предыдущих аналогичных исследований или осуществляться эмпирически – перебором и оценкой функций разных типов и т.п.

При изучении связи экономических показателей производства (деятельности) используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму. Уравнение однофакторной (парной) линейной корреляционной связи имеет вид:

 

 

Поскольку а0 является средним значением у в точке х = 0, экономическая интерпретация часто затруднена или вообще невозможна.

Коэффициент парной линейной регрессии а1 имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Уравнение (9.2) показывает среднее значение изменения результативного признака у при изменении факторного признака х на одну единицу его измерения, т.е. вариацию у, приходящуюся на единицу вариации х. Знак а1 указывает направление этого изменения.

Параметры уравнения а0, а1 находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений), т.е. в основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных у, от выровненных

 

Пример 1. Рассмотрим построение однофакторного уравнения регрессии зависимости производительности труда у от стажа работы х по данным табл. 9.1 (10 рабочих одной бригады заняты производством радиоэлектронных изделий; данные ранжированы по стажу их работы).

Исходя из экономических соображений стаж работы выбран в качестве независимой переменной x. Сопоставление данных параллельных рядов признаков х и у (табл. 9.1) показывает, что с возрастанием признака х (стажа работы), растет, хотя и не всегда, результативный признак у (производительность труда). Следовательно, между х и у существует прямая зависимость, пусть неполная, но выраженная достаточно ясно.

 

 

Для уточнения формы связи между рассматриваемыми признаками используем графический метод. Нанесем на график точки, соответствующие значениям х, у, получим корреляционное поле, а соединив их отрезками, – ломаную регрессии (Данный метод эффективен лишь при небольшом объеме совокупности и достаточно тесной связи между признаками. Более наглядную характеристику связи можно получить, построив ломаную регрессии по частным средним.) (рис. 9.1).

Анализируя ломаную линию, можно предположить, что возрастание выработки у идет равномерно, пропорционально росту стажа работы рабочих х. В основе этой зависимости в данных конкретных условиях лежит прямолинейная связь (см. пунктирную линию на рис. 9.1), которая может быть выражена простым линейным уравнением регрессии:


Дата добавления: 2015-10-24; просмотров: 125 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Функциональные и стохастические связи| Проверка адекватности регрессионной модели

mybiblioteka.su - 2015-2024 год. (0.007 сек.)