Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Частотнозависимые биологические эффекты ЭМП

Читайте также:
  1. IV. 1. Микробиологические факторы
  2. АДАПТИВНЫЕ БИОЛОГИЧЕСКИЕ РИТМЫ ОРГАНИЗМОВ
  3. Билет 20. Основные радиац. факторы, определяющие радиобиол. эффекты.
  4. Билет 22. Основные биологические факторы, определяющие радиобиологические эффекты.
  5. Биологические вирусы.
  6. Биологические факторы
  7. Биологические факторы, обусловливающие построение системы физического воспитания населения Республики Беларусь.

Частотнозависимые биологические эффекты ЭМП, описанные на сегодняшний день, немногочисленны и вместе с тем разнообразны, что затрудняет их классификацию.

Под действием СВЧ излучений некоторые бактерии (например, кишечная палочка) синтезируют своеобразный белок - колицин, обладающий антигенными свойствами для бактерий других штаммов. Это наблюдается только на определенных частотах (от 45,6 до 46,1 ГГц) при довольно низкой интенсивности поля (вплоть до 0,1 Вт-м-2), хотя синтез колицина происходит и под влиянием других факторов. Образование нового белка принято объяснять избирательным действием таких факторов, в том числе ЭМВ определенных частот, на генетический аппарат клетки. Авторы этой гипотезы полагают, что среди процессов хранения и передачи генетической информации изменяются не репликация и транскрипция, а трансляция. Вероятно, СВЧ излучение может нарушить нормальную последовательность нуклеотидов в матричной РНК, следствием чего явится продукция необычных для клетки макромолекул, которые не способны обеспечить полноценное отправление соответствующих функций. Синтез «неполноценных» белков отражается в первую очередь на тех субстратах, которые активно обновляются (например, ферменты). С такими нарушениями связывают изменения уровня обменных процессов и физиологической активности животных, наблюдавшиеся рядом исследователей.

Данные о влиянии ЭМВ на генетический аппарат клеток малочисленны, противоречивы и фрагментарны. Так, гамма-глобулин человека теряет антигенные свойства при действии на кровь электромагнитных излучений частотой 13,1 — 13,3—13,9 — 14,4 МГц. ЭМП других частот не приводят к подобному эффекту. Вместе с тем его можно объяснить без привлечения гипотезы о действии ЭМВ на генетический аппарат. Существует предположение о возможности взаимодействия внешних ЭМП с компонентами плазматической мембраны клетки. Так объясняют усиление выхода ионов кальция из тканей мозга, подвергнутого облучению ЭМВ низкой частоты. Это явление возникает только на определенных частотах (6— 16 Гц). Особенно эффективно применение не гармонических колебаний низкой частоты, а УВЧ полей, модулированных низкими частотами (при глубине модуляции 80—90%).

В основе кальциевой гипотезы лежат сведения о структуре плазмолеммы. Многие молекулы, входящие в ее состав, имеют конечные цепочки аминосахаров выступающие в примембранное пространство. Они образуют па поверхности клеточной мембраны многочисленные участки неподвижных отрицательных зарядов, обладающих сильным сродством к Н- и Са2 +. Эти катионы адсорбируются плазмолеммой из межклеточной среды. Вероятно, катионы, фиксированные полианионным слоем плазмолеммы нервной клетки, могут обеспечить се взаимодействие со слабыми ЭМП. Энергия таких полей недостаточна для изменения ионной проницаемости возбудимой мембраны (то есть для активации потенциалзависимых ионных каналов в ней), но этой энергии может хватить для нарушения электро­статической связи катионов с мембранными аминосахарами. В результате катионы покидают поверхность плазмолеммы и в межклеточной среде создается их избыток. Согласно кальциевой гипотезе, это относится, прежде всего, к ионам кальция. Резкое повышение градиента Са2+ на плазматических мембранах нейронов ЦНС может вызвать возбуждение, поскольку нервные клетки возбуждаются входящим кальциевым током через плазмолемму, покрывающую их тела.

Помимо ионной, рассматриваются также мембранная и дипольная теории взаимодействия ЭМП с микроструктурами, в рамках которых преобразование энергии ЭМП в кинетическую энергию молекул также связано с представлениями о флуктуационно-вероятностном влиянии, реализующемся через триггерные усилительные механизмы живой системы.

Специфическое действие ЭМИ объясняют нелинейным характером влияния поля на микроструктуры. Механизм действия СВЧ заключается в изменении мембранной проницаемости клетки, что приводит к изменению функции нуклеотидциклазной системы, влияющей на активность окислительно-восстановительных ферментов. Продукты метаболизма гуморальным путем вызывают изменения физиологического состояния. Некоторыми авторами высказываются предположения о существовании у животных и человека специфических рецеп­торов для восприятия ЭМП.

Электромагнитные излучения определенных (резонансных) частот способны выполнять роль сигналов, то есть управлять выделением свободной энергии биологической системы, не внося в эту систему значительной энергии извне. Критерием информационного воз­действия ЭМП является преобладание энергии ответных реакций организма (изменений метаболизма и физиологической активности) над энергией внешнего поля, которое их вызвало. Энергетические эффекты ЭМП характеризуются тем, что энергия ответных реакций биологической системы меньше энергии, привносимой в нее полем.

Биологические эффекты слабых ЭМП определяются высокой избирательной чувствительностью к ним (в узком спектральном диапазоне) того или иного типа клеток. По-видимому, наибольшей восприимчивостью к слабым полям обладают нейроны. Специализированные электрорецепторы обнаружены у не­многих представителей животного мира. У человека их не на­шли. Однако отсутствие как электрорецепторов, так и специфических «электрических» ощущений не свидетельствует о невозможности восприятия человеком слабых ЭМП. Одним из механизмов избирательной чувствительности нейронов головного мозга к низкочастотному излучению может служить взаи­модействие их с катионами (например Са2+ — согласно кальциевой гипотезе), когда они десорбируются с плазматических мембран, которые их прежде связывали.

По аналогии с принципом работы усилителя (слабый сигнал на входе управляет перераспределением значительной энер­гии на выходе) механизмы реагирования биологических систем на слабые ЭМП определяются как усилительные (или кооперативные). Роль пускового сигнала для некоторых биологических систем способны, вероятно, выполнять слабые ЭМП определенных частот. Они могут взаимодействовать как с зарядами, фиксированными на клеточной мембране, так, по-видимому, и с внутриклеточными субстратами, вплоть до генетического ап­парата клетки. Однако высокий градиент электрического потенциала, существующий на плазмолемме, затрудняет воздействие ЭМП на внутриклеточные системы. При некоторых патологических состояниях уровень мембранного потенциала понижается, что может привести к большей уязвимости внутриклеточных процессов для внешних полей. Этим, вероятно, обусловлена повышенная чувствительность больных к атмосферным явлениям.

Исследования последних десятилетий убедительно подтвердили информационную роль и значение для биологических систем сверхслабых ЭМП, в том числе в диапазоне СНЧ при определенных законах их модуляции.

Развитие идеи о том, что электроны и ЭМП как более лабильные, чем молекулы (элементы живой материи) несут энергию, заряды и информацию, являясь своего рода горючим для жизненных процессов, привело многих авторов к мысли о существовании в организме системы поддержания биоэлектрического гомеостаза, обеспечивающей нормальное физиологическое состояние клеток. Предположение о том, что в организме существует механизм центральной регуляции физиологических процессов, согласованный с периодически изменяющимися параметрами электрических и магнитных полей Земли и предназначенный для защиты от помех со стороны спорадически возникающих интен­сивных космических ЭМП всех частотных ди­апазонов, приводит к мысли о наличии в высокоорганизованном организме сенсорной системы, воспринимающей изменения ЭМП внешней среды.

Среди выявленных различными авторами закономерностей в действии СВЧ-полей нетепловой интенсивности можно отметить следующие, связанные способностью ЭМП:

Таким образом, в результате взаимодействия организма с электрической составляющей ЭМП могут возникать биологические эффекты трех типов: возбуждение, нагревание и кооперативные процессы. Два из них хорошо изучены и находят объяснение в рамках концепции энергетического взаимодействия поля с организмом. Третий эффект, проявляющийся в восприятии биосистемами слабых электромагнитных излучений, исследован недостаточно. Его происхождение связано, по-видимому, с тем, что в процессе эволюции биологических систем ЭМП определенных частот выполняли по отношению к ним миссию носителя информации об окружающей среде. Для света это очевидно. Информационная функция других участков электромагнитного спектра еще не доказана и по-настоящему не объяснена.


Дата добавления: 2015-09-02; просмотров: 62 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Биологическое действие ЭМП высокой частоты| ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ ЦИФРОВОГО ШУМА С ЖИВЫМИ СИСТЕМАМИ И ПРОБЛЕМЫ БИОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ЭМИ

mybiblioteka.su - 2015-2024 год. (0.007 сек.)