Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Вопрос№21

Вопрос№30 | Вопрос№29 | Сущность социальных отношений | Природа социальных процессов | Сущность и отличительные признаки управления социальными процессами | Глава 2. Модели и моделирование | Виды моделирования. Математическое, имитационное и компьютерное моделирование | Особенности моделирования социальных процессов | Вопрос№22 | Отличия открытых систем в теории систем от кибернетики |


Фракталы (под другими названиями) открыты математиками более ста лет назад, но их долго относили к причудам математиков, исследовавших функции и множества, для которых применимы классические методы вычислений.

Функции и множества, которые не являются гладкими или регулярными (множество Кантора, кривые Пеано, функции Вейерштрасса и другие) долго игнорировали как патологические и не заслуживающие изучения. Известный математик Шарль Эрмит назвал их «монстрами».

Эти объекты вновь стал исследовать американский математик Бенуа Мандельброт в 1975 году. Он же и придумал для них термин «фрактал». В своих первых работах он рассматривал их как чисто математические объекты, а в 1982 году вышла его знаменитая книга «Фрактальная геометрия природы», в которой Мандельброт показал фрактальный характер геометрии окружающего мира.

Фракталоподобной структурой обладают такие разные явления как:

береговые линии островов и материков,

ландшафты гор, границы облаков, ветви деревьев, русла рек,

турбулентные вихри,

сосудистая система человека,

зерна в скалистых породах, металлах и композитных материалах,

геометрическая структура кристаллов, молекул химических веществ, в частности, протеинов,

и многие другие объекты.

Используются в изобразительном искусстве, музыке, литературных текстах

Об определении понятия «фрактал»

Все фракталы, которые исследованы, обладают двумя основными свойствами – изломанностью и самоподобием.

Изломанность понятна и визуально и математически (как отсутствие производной в каждой точке излома).

Самоподобие в классическом смысле: часть есть уменьшенная копия целого, в неклассическом: часть является деформированной копией целого.

Строгого и полного определения фракталов пока нет. Е. Федер в работе «Фракталы» (1991) приводит два определения фрактала:

1. Фракталом называется множество, размерность Хаусдорфа-Безиковича которого строго больше его топологической размерности. (определение Мандельброта).

2. Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому.

Наиболее полное на сегодня определение фрактала:

фракталом называют функциональное отображение или множество, получаемое бесконечным рекурсивным процессом и обладающее тремя следующими свойствами: дробной размерностью Хаусдорфа-Безиковича, самоподобием и недифференцируемостью.

Следует различать фракталы как математические объекты и фракталоподобные объекты реального мира. Последние обладают свойством самоподобия в ограниченном масштабе (они моделируются с помощью конечного, а не бесконечного рекурсивного процесса).

Фракталы используют для сжатия изображений путем нахождении в изображении подобных областей и сохранении в файле только коэффициентов преобразований подобия. Сжатие произойдет в том случае, когда коэффициенты преобразований займут меньше места, чем исходное изображение.

Поскольку многие природные объекты, которые появились в результате самоорганизации и «странные аттракторы» обладают фрактальной размерностью, то для синергетики исследование фракталов является одной из основных задач.

Аттра́ктор (англ. attract — привлекать, притягивать) — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух), периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми траекториями внутри (как у странного аттрактора).

Существуют различные формализации понятия стремления, что приводит к различным определениям аттрактора, задающим, соответственно, потенциально различные множества (зачастую — вложенные одно в другое). Наиболее употребительными определениями являются максимальный аттрактор (зачастую — в своей малой окрестности, см. ниже), аттрактор Милнора и неблуждающее множество.

Аттракторы классифицируют по:

  1. Формализации понятия стремления: различают максимальный аттрактор, неблуждающее множество, аттрактор Милнора, центр Биркгофа, статистический и минимальный аттрактор.
  2. Регулярности самого аттрактора: аттракторы делят на регулярные (притягивающая неподвижная точка, притягивающая периодическая траектория, многообразие) и странные (нерегулярные — зачастую фрактальные и/или в каком-либо сечении устроенные как канторово множество; динамика на них обычно хаотична).
  3. Локальности («притягивающее множество») и глобальности (здесь же — термин «минимальный» в значении «неделимый»).

Также, есть известные «именные» примеры аттракторов: Лоренца, Плыкина, соленоид Смейла-Вильямса, гетероклинический аттрактор (пример Боуэна).

Теория автоволновых процессов.  
  Распространение понятий равновесной термодинамики на состояния, далекие от равновесия, и, в частности, принцип эволюции Гленсдорфа-Пригожина вызвали критику со стороны «синергетиков». Так, Ландауэр построил контрпример, показывающий, что никакая функция состояния, в том числе и энтропия, не может быть положена в основу критерия устойчивости состояния, как это сделано в принципе эволюции Гленсдорфа-Пригожина [2]. Отечественна школа нелинейных колебаний и волн, основоположником которой по праву считается Л. И. Мандельштам [14], рассматривает общую теорию структур в неравновесных средах как естественное развитие и обобщение на распределенные системы идей и подхода классической теории нелинейных колебаний [15]. Еще в ЗО-х годах Л. И. Мандельштам сформулировал программу выработки «нелинейной культуры, включающей надежный математический аппарат и физические представления, адекватные новым задачам, выработать нелинейную интуицию, годную там, где оказывается непригодной интуиция, выработанная на линейных задачах» [16]. Разработанная почти полвека назад, эта программа становится особенно актуальной в наши дни существенной «делинеаризации» всей науки. Без наглядных и емких физических образов, адекватных используемому аппарату, немыслимо построение общей теории структур, теории существенно нелинейной. Вооружая физика концентрированным опытом предшественников, эти образы позволяют ему преодолевать трудности, перед которыми заведомо мог бы спасовать исследователь, полагающийся только на свои силы. В этом отношении физические образы Л. И. Мандельштама представляют собой глубокую аналогию со структурным подходом Э. Нётер, научившей математиков за конкретными деталями задачи различать контуры общей схемы - математической структуры, задаваемой аксиоматически. Суть структурного подхода, сформулированного Н. Бурбаки, звучит как парафраза мандельштамовской программы создания нелинейной культуры: «Структуры» являются орудиями математика; каждый раз, когда он замечает, что между элементами, изучаемыми им, имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа, тогда как раньше он должен был бы мучительно выковывать сам средства, необходимые для того, чтобы штурмовать рассматриваемую проблему, причем их мощность зависела бы от его личного таланта, и они были бы отягчены часто излишне стеснительными предположениями, обусловленными особенностями изучаемой проблемы» [17]. Следуя Р.В. Хохлову, возникновение волн и структур, вызванное потерей устойчивости однородного равновесного состояния, иногда называют автоволновыми процессами (по аналогии с автоколебаниями) [ 15, 18]. На первый план здесь выступает волновой характер образования структур: независимость их характерных пространственных и временных размеров от начальных условий (выход на промежуточную асимптотику [19]), а в некоторых случаях - от краевых условий и геометрических размеров системы.

 


Дата добавления: 2015-08-27; просмотров: 40 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Возникновение самоорганизации в неравновесных системах. Понятие обратных связей| Вопрос№20

mybiblioteka.su - 2015-2024 год. (0.006 сек.)