Читайте также:
|
|
Кристаллическая решетка золота, как и других металлов, устроена таким образом, что валентные электроны способны перемещаться по всему объему вещества, чем обусловлена высокая электропроводность металлов. Переменное электрическое поле светового луча смещает электроны проводимости и на поверхности наночастицы образуется диполь, который колеблется с частотой поля падающего света. Этот колеблющийся вблизи поверхности наночастицы диполь называют поверхностным плазмоном. Возникновение поверхностного плазмона возможно, если величина наночастицы много меньше длины падающего света.
Совпадение частоты колебаний поверхностного плазмона и частоты колебаний падающего света вызывает резонансное поглощение и рассеяние света, которое называется поверхностным плазмонным резонансом (ППР).
Поглощение света веществом рассчитывается по закону Ламберта-Бера
(1)
где и - интенсивности света до и после прохождения через слой толщины d (см) раствора вещества с концентрацией С (моль/л). Отношение называется погашением или экстинкцией, величина ε -молярным коэффициентом экстинкции.
Таким образом возникает специфическая полоса поглощения раствора в видимой области, обусловленная малостью размера частиц. Плазмонная полоса поглощения возникает в том случае, если размеры частицы становятся меньше длины свободного пробега свободных электронов в массивном металле. Лишь для трех металлов, Au, Ag и Cu, плазмонная частота наночастиц смещается из УФ в видимую области спектра, для всех прочих она смещена в УФ область.
Плазмонный резонанс золотых наночастиц с диаметром менее 20 нм локализован в зеленой части видимого спектра (около 520 нм для водных коллоидов), что объясняет красный цвет таких золей. С увеличением размера резонанс немного смещается в красную область и, соответственно, изменяется оттенок золя. Приведенный ниже рисунок показывает теоретические спектры оптической плотности в 1-см кювете для частиц различного диаметра при фиксированной концентрации золота в системе (57 мкг/мл, что соответствует 0.01% ЗХВК). Отметим, что экспериментальные спектры рис.4 очень хорошо воспроизводят этот расчет по теории Ми.
Рис. 4. Спектры оптической плотности суспензий золотых сферических частиц с диаметром от 10 до 120 нм. Расчет по теории Ми для 1-см кюветы и постоянной концентрации золота 57 мкг/мл.
Дата добавления: 2015-08-27; просмотров: 235 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Синтез сферических наночастиц коллоидного золота | | | Приборы, оборудование и методы измерения |