Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Масс-спектрометрия

Масс-спектрометр для новичков | Характеристики масс-спектрометров и масс-спектрометрических детекторов | Зачем нужна масс-спектрометрия | Принцип действия квадрупольного масс-спектрометра | Вторично-электронные умножители |


Читайте также:
  1. Зачем нужна масс-спектрометрия
  2. Масс-спектрометрия. Основные типы масс-спектрометров.

 

Масс-спектрометрия - это физический метод измерения отношения массы заряженных частиц материи (ионов) к их заряду.

Этот метод, сегодня рутинно используемый в тысячах лабораторий и предприятий мира, имеет в своей основе фундаментальные знания природы вещества и использует основополагающие физические принципы явлений.

Естественно, приборы, которые используются в этом методе, называются масс-спектрометры или масс-спектрометрические детекторы. Эти приборы имеют дело с материальным веществом, которое как известно, состоит из мельчайших частиц - молекул и атомов. Масс-спектрометры устанавливают, что это за молекулы (то есть, какие атомы их составляют, какова их молеклярная масса, какова структура их расположения) и что это за атомы (то есть их изотопный состав). Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия имеет дело с самими частицами вещества. Масс-спектрометрия измеряет соотношение массы к заряду, для установления парциальных давлений, поэтому иногда масс-спектры называют газоанализаторами. Для этого используются законы движения заряженных частиц материи в магнитном или электрическом поле. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра. Масс-спектр - это просто рассортировка заряженных частиц по отношениям массы к заряду. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Следовательно, первое, что надо сделать для того, чтобы получить масс-спектр, превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ.

 

 

Рис. 9. Скелетная схема масс-спектрометра: 1 — система подготовки и введения исследуемого вещества; 2 — ионный источник; 3 — масс-анализатор; 4 — приемник ионов; 5 — усилитель; 6 — регистрирующее устройство; 7 — ЭВМ; 8 — система электрического питания; 9 — откачные устройства. Пунктиром обведена вакуумируемая часть прибора.

 

Масс-спектрометр (рис. 9) обычно содержит устройство для подготовки исследуемого вещества 1; ионный источник 2, где это вещество частично ионизуется и происходит формирование ионного пучка; масс-анализатор 3, в котором происходит разделение ионов по массам, точнее, обычно по величине отношения массы m иона к его заряду e; приёмник ионов 4, где ионный ток преобразуется в электрический сигнал, который затем усиливается и регистрируется. В регистрирующее устройство 6, помимо информации о количестве ионов (ионный ток), из анализатора поступает также информация о массе ионов. Масс-спектрометр содержит также системы электрического питания и устройства, создающие и поддерживающие высокий вакуум в ионном источнике и анализаторе. Иногда масс-спектрометры соединяют с ЭВМ.

Параметры масс-спектрометров зависят, главным образом, от таких факторов, как эффективность ионизации и экстрагирования ионов, степень разделения ионного пучка по массам и эффективность улавливания и регистрации ионов. Особое значение имеют такие рабочие параметры масс-спектрометров, как диапазон анализируемых масс, диапазон рабочих давлений, разрешающая способность, чувствительность, порог чувствительности и относительная чувствительность; они обычно указываются изготовителями приборов.

Диапазоны анализируемых масс и рабочих давлений достаточно очевидны и обычно приводятся в виде абсолютных величин безотносительно к разрешающей способности или чувствительности. Разрешающая способность представляет собой способность разделять ионы с молекулярными массами, мало разнящимися между собой, и определяется как отношение массового числа М = m/е к наименьшему разрешаемому изменению массового числа ΔМ = Δm/е, т. е. равна М/ΔМ (где m – масса иона, е – его заряд в единицах элементарного электрического заряда). Таким образом, на разрешающую способность могут влиять массовое число и, до некоторой степени, относительные высоты пиков ионов масс-спектра. На практике определение разрешающей способности упрощается, если принять ΔМ=1 а. е. м. (атомная единица массы). В этом случае говорят о разрешении пиков с целочисленными массами (например, пиков, соответствующих массам М и М + 1).


Дата добавления: 2015-08-20; просмотров: 64 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Шаг 2. Фильтрация ионов| Квадрупольный масс-спектрометр

mybiblioteka.su - 2015-2025 год. (0.011 сек.)