Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Регенерация ионитов

Введение | Необходимость доочистки воды | Ионный обмен в водоподготовке | Виды ионитов | Ионообменная адсорбция | ИОНООБМЕННЫЕ УСТАНОВКИ СЕРИИ SF | Фильтры непрерывного действия | Ионитовые противоточные фильтры для умягчения и обессоливания воды | ОБОРУДОВАНИЕ ИОНООБМЕННЫХ УСТАНОВОК | Противоточная регенерация ионообменных смол для водоподготовки |


Читайте также:
  1. Виды ионитов
  2. Ионитовые противоточные фильтры для умягчения и обессоливания воды
  3. Противоточная регенерация ионообменных смол для водоподготовки
  4. Регенерация
  5. Регенерация
  6. Регенерация никелевых катализаторов

В 1978г. компания Degremont запантентовала и предложила потребителям противоточную технологию регенерации ионитов под названием UFD. По этой технологии рабочий цикл осуществляется сверху вниз, а регенерация - снизу вверх. Весь внутренний объем фильтра заполняется активной смолой. Наличие инертного материала не является обязательным, и если он применяется, то исключительно для защиты верхнего распределительного устройства от ионитной мелочи (аналогично технологии SCHWEBEBETT). Благодаря такой загрузке фильтра слой ионита всегда находится в зажатом состоянии (как при проведении рабочего цикла, так и при регенерации); обеспечиваются варьирование рабочих скоростей потоков в очень широком диапазоне и возможность чередования технологических остановов с возобновлением рабочего цикла. Конструкция фильтра отличается простотой. Имеются верхнее и нижнее распределительные устройства, а в верхней части фильтра установлен штуцер для гидроперегрузки ионита, который обеспечивает возможность удаления 30…50% ионита во внешнюю емкость для промывки взрыхлением. Оставшийся в фильтре ионит также подтвергается взрыхлению.

Взвешенные вещества, поступающие в фильтр с обрабатываемой водой, аккумулируются главным образом на поверхности слоя загрузки (и частично в верхних слоях), откуда они эффективно удаляются при проведении операции "зажатия" слоя на стадии регенерации. Важным достоинством рассматриваемой технологии является возможность удаления из слоя смолы накопленных взвесей непосредственно в рабочем фильтре (т.е. без гидроперегрузки ионита).

 

Эффективность очистки слоя ионита от взвесей может быть существенно повышена барботажем воздуха [13].

Необходимо отметить, что концентрационная характеристика, используемая в России для оценки количества взвешенных веществ, не является объективной, если требуется определить степень применимости той или иной технологии противоточного ионирования в конкретных условиях эксплуатации. В самом деле, при длительном фильтроцикле количество взвесей, поступающих в ионитный фильтр с обрабатываемой водой (даже если их концентрация и незначительна), может оказаться существенно большим в абсолютном выражении, чем в условиях короткого фильтроцикла (пусть даже и при более высокой исходной концентрации дисперсий).

По UPCORE в настоящее время в мире работает около 700 установок деминерализации и умягчения. При этом исходная вода, поступающая на ионирование имеет рабочие параметры чрезвычайно широкого диапазона:

Солесодержание, мг-экв/л 1..15,Содержание, мг/л:,Органических примесей(по перманганатной окисляемости) до 120,кремниевые кислоты(по диоксиду кремния) до 130

взвесей 0,1…15

Эксплуатируемые противоточные фильтры, оснащенные распределительными устройствами в виде как лучевых систем, так и ложных днищ (диаметры 0,5..4м, высота слоя загрузки 1…4м) обеспечивают производительность единичного фильтра в рабочем режиме 5…600м3/ч. Для регенерации ионитов по UPCORE в зависимости от конкретной области применения с успехом используются растворы соли, щелочи, серной, соляной и азотной кислот.

Данная технология свободна от недостатков, присущих большинству других противоточных технологий, исключительно проста и надежна в эксплуатации. Ее применение позволяет минимизировать объем капитальных затрат при создании (а особенно при реконструкции действующих) ВПУ и эксплуатационные расходы. Технология UPCORE в последнюю четверть прошлого века стала наиболее широко применяемой противоточной регенерацией в мире [13].

 

Методы противоточного ионирования обычно применяются на ВПУ для умягчения и деминерализации. Выбор технологии SCHWEBEBETT для умягчения воды может оказаться предпочтительным по сравнению с UPCORE в тех случаях, когда:

· вода, подаваемая на умягчение, практически свободна от взвешенных веществ;

· производительность установки постоянна;

· отсутствует необходимость в технологических остановах.

Благодаря тому что регенерация по SCHWEBEBETT проводится сверху вниз и нет необходимости в зажатии слоя, уплотненного под собственным весом, можно снизить линейную скорость подачи концентрированного (8-12%) солевого раствора (например, до 5 м/ч). Это, в свою очередь, позволяет минимизировать потребление соли (доводя его до уровня 120% от стехиометрического соотношения), обеспечивая при этом необходимую длительность контакта реагента с катионитом, одновременно сокращая потребление воды на отмывку и уменьшая объем образующихся солевых стоков. При проведении регенерации по UPCORE (снизу вверх) возможность для подобного снижения расхода потока реагента отсутствует, так как при низкой линейной скорости несущего потока слой ионита разуплотнится и будет перемешиваться. Поэтому, если требуется минимизировать удельный расход соли на регенерацию при реконструкции существующей прямоточной схемы используя UPCORE для умягчения, часто приходится наращивать цилиндрическую часть обечайки фильтра и увеличивать высоту слоя загрузки катионита (а это приводит к дополнительным затратам и возрастанию потребления воды на отмывку).

Необходимо также отметить случаи, когда применять SCHWEBEBETT оказывается целесообразно и для деминерализации воды. Прежде всего это установки малой производительности (до 10…15 м3/ч) с постоянной рабочей нагрузкой по обессоленной воде [13].

В современных комплексных технологиях водоподготовки сочетают мембранные методы очистки с ионным обменом и (или) электродеионизацией.

В заключение необходимо отметить, что добиться максимальной эффективности при использовании любой противоточной технологии можно только путем комплексного подхода, в котором оптимальность выбора технологии должна обязательно сочетаться с оптимальными режимными параметрами работы установки, с конструктивными характеристиками основного и вспомогательного оборудования, с грамотным выбором типа и качественных показателей применяемых ионитов и, наконец, при скрупулезном соблюдении положений технологического регламента. Пренебрежение даже одним из перечисленных критериев может снизить эффективность (экономичность) эксплуатации ВПУ, что будет служить дополнительным фактором, подталкивающим потребителей к выбору электродеионизации в качестве альтернативы ионному обмену в процессах деминерализации воды [13].

Список литературы

1. Громов С.Л. Технологические преимущества процесса противоточной регенерации ионообменных смол UPCORE: промывка взрыхлением // Теплоэнергетика. 1998. № 3. С. 52—55. 2. Громов С.Л. Основные пути совершенствования технологии водоподготовки в СНГ // Химическое и нефтяное машиностроение. 1998. Кй 12. С. 47—48. 3. Юрчевский Е.Б., Яковлев А.В. Внедрение технологии проти-воточного ионирования на базе реконструкции установленного оборудования // Энергосбережение и водоподготовка. 1998. № 1. С. 52—59. 4. Внедрение противоточной технологии UPCORE фирмы «Дау Кэмикал» (США) на ВПУ по обессоливанню ТЭЦ-12 МОСЭНЕРГО / И.И. Боровкова, И.С. Бадаев, С.Л. Громов и др. // Электрические станции. 2000. № 5. С. 29—31. 5. Алексеева Т.В., Федосеев Б.С. Совершенствование техники ионного обмена на основе противоточной технологии // Энергетик. 2001. №7. С. 17—19. 6. Гришки А.А., Малахов И.А., Ларин Б.М. Экологические проблемы ионообменных технологий на ТЭС // Сб. материалов меж-дунар. конф. «Экология энергетики». М.: Изд-во МЭИ. 2000. С. 131—332. 7. Опыт применения технологии противоточного натрий-катио-нирования в котельных / Э.Г. Амосова, П.И. Долгополов, Н.В. Потапова и др. // Сантехника. 2003, Хе 2. С. 28—31. 8. Красильннков М.Д. Противоточная технология обработки воды // Вода и экология. 2005. № 2. С. 39—41. 9. Ларин Б.М., Бушуев Е.Н., Бушуева Н.В. Технологическое и экологическое совершенствокание водоподготовительных установок на ТЭС // Теплоэнергетика. 2001. N° 8. С. 23—27. 10. Патент РФ № 1372711, Способ регенерации ионнтного фильтра / Д.Л. Цырульников, Е.Б. Юрчевский, А.В. Яковлев и др. // Изобретения. 1996. 11. Патент ФРГ Jft 1807694 W. Lux. 1968. 12. Патент ФРГ М 1442689. F. Martinda, G. Siegers. 1963. 13. Брннгс Б. Технологические схемы ионообменной очистки воды // Индустрия напитков. 2004. № 4. С. 55—61. 14. Патент EPV № 0142359 А2. A. D. Pnmac, J. Dobias. 1985. 15. Копылов А.С., Лавыгин В.М., Очков В.Ф. Водоподготовка в энергетике. М.: Изд-во МЭИ, 2003.16. http://www.engineeringsystems.ru17. http://evrovoda.by18. http://www.nwr.ru19. http://www.mediana-filter.ru20. http://www.energokaskad.com


Дата добавления: 2015-08-17; просмотров: 251 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Способ противоточной регенерации ионитов| МАСКА ДЛЯ РОСТА ВОЛОС С ГОРЧИЦЕЙ.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)