Читайте также:
|
|
Для аппроксимации данных о реальном доходе компании Wm. Wrigley Jr. Company мы применили три модели: линейную, квадратичную и экспоненциальную. Какая из этих моделей лучше? Кроме визуального впечатления и сравнения скорректированных коэффициентов r2, в качестве инструмента для оценки качества модели применяются разности первого, второго и третьего порядка.
Выбор модели на основе анализа разностей первого и второго порядка, а также относительных разностей:
• Если исходные данные хорошо аппроксимируются линейной моделью, разность первого порядка должна быть постоянной. Иначе говоря, разности между двумя последовательными значениями одинаковы: Y2 – Y1 = Y3 – Y2 = … = Yn – Yn–1
• Если исходные данные хорошо аппроксимируются квадратичной моделью, разность второго порядка должна быть постоянной. Иначе говоря, разности между двумя последовательными разностями первого порядка одинаковы: (Y3 – Y2) – (Y2 – Y1) = (Y4 – Y3) – (Y3 – Y2) = … = (Yn – Yn–1) – (Yn–1 – Yn–2)
• Если исходные данные хорошо аппроксимируются экспоненциальной моделью, относительная разность должна быть постоянной. Иначе говоря, относительные разности, вычисленные по двум последовательным наблюдениям, одинаковы:
Не следует ожидать, что модель будет идеально аппроксимировать конкретный набор данных. Несмотря на это, при выборе подходящей модели необходимо анализировать разности первого и второго порядка, а также относительные разности. Для нашего примера с компанией Wm. Wrigley Jr. результаты такого анализа приведены на рис. 13.
Рис. 13. Разности первого и второго порядка, а также относительные разности, вычисленные на основе данных о реальных доходах компании Wm. Wrigley Jr.
Анализ рис. 13 показывает, что разности первого и второго порядка, а также относительные разности не остаются постоянными. Итак, несмотря на то, что скорректированный коэффициент r2 у всех трех моделей, рассмотренных выше, одинаков и приближенно равен 0,96, возможно, существуют более точные модели.
Дата добавления: 2015-08-17; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Вычисление трендов с помощью метода наименьших квадратов и прогнозирование | | | Вычисление тренда с помощью авторегрессии и прогнозирование |