Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Человек против машины

Чтение мыслей | Сфотографировать мечту | Этично ли чтение мыслей? | Моя томограмма | Трикордеры и портативные сканеры мозга | Телекинез и божественное могущество | Конец рода человеческого? | Робот ASIMO | История ИИ | Является ли мозг цифровым компьютером? |


Читайте также:
  1. I) Различение объекта противоречия.
  2. I, 4. И живот бе свет человеком
  3. I. 9–10. Иже просвещает всякаго человека грядущаго в мир. (В мире бе).
  4. I. Традиции предков – основа интеллекта и нравственности человека
  5. I.ЧЕЛОВЕК И ПРИРОДА
  6. II Человек и человек
  7. II) Перепишите сновапредложения из упражнения I, выражая идею противо- поставления с помощью относительных придаточных предложения.

 

Однажды мне довелось помериться мыслями с роботом — принять участие в интеллектуальном состязании с машиной Томазо Поджо (Tomaso Poggio) из MIT. Роботы не способны распознавать простые образы, как это делаем мы, но Поджо сумел создать компьютерную программу, которая может потягаться по скорости с человеком в одной достаточно специфической области: в «мгновенном распознавании». Речь идет об уникальной способности человека мгновенно, даже не сознавая того, узнать объект. (Мгновенное распознавание играло важную роль в эволюции человека — ведь у наших предков была лишь доля секунды на то, чтобы обнаружить притаившегося в кустах тигра, а осознать и обдумать этот факт можно было и потом.) Первое время робот Поджо стабильно набирал в особом визуальном тесте больше баллов, чем человек-участник.

Состязание между мной и машиной выглядело очень просто. Я садился в кресло и некоторое время вглядывался в обычный компьютерный экран. Затем на экране на долю секунды мелькала картинка, а я должен был как можно быстрее нажать одну из двух кнопок — показать, вижу я на картинке какое-нибудь животное или нет. Решение нужно было принимать как можно быстрее — не дожидаясь восприятия картинки сознанием. Компьютер должен был принять по той же картинке аналогичное решение.

Стыдно признаться, но после множества тестов результаты машины и мои оказались примерно одинаковыми. Но иногда машина работала значительно лучше и оставляла меня далеко позади. Я проиграл компьютеру. (Единственным утешением было то, что, как мне сказали, компьютер дает правильный ответ в 82 % случаев, а человек в среднем лишь в 80 %.)

Ключ к успеху программы Поджо в том, что в ней использованы уроки матери-природы. Многие ученые только сейчас начинают понимать истинность утверждения «Колесо уже изобретено, почему бы не скопировать его?». Приведем пример.

Обычно робот, глядя на картинку, пытается разложить ее на элементы и представить как совокупность линий, кругов, квадратов и других геометрических форм. А вот робот Поджо действует иначе.

Человек, глядя на картинку, сначала воспринимает контуры объектов, затем детали внутри каждого объекта, затем оттенки внутри деталей и т. д. Таким образом, мы как бы расщепляем изображение на множество слоев. Компьютер, обработав один слой изображения, объединяет его со следующим и включает в общую картину. Так, шаг за шагом, слой за слоем, он имитирует иерархическую обработку изображения, которую использует наш мозг. (Программе Поджо недоступны невероятные возможности распознавания образов, которые мы с вами воспринимаем как нечто само собой разумеющееся, — трехмерная визуализация, распознавание тысяч объектов под самыми разными углами и т. д., — но все же нельзя не признать, что это серьезное достижение.)

Позже мне довелось увидеть в действии оба подхода к созданию ИИ. Сначала я побывал в Центре искусственного интеллекта Стэнфордского университета и встретился с роботом STAIR (Stanford artificial intelligence robot), созданным на базе традиционного подхода. STAIR — робот ростом около 120 см с огромной механической рукой на шарнирах. Этой рукой робот может брать со стола предметы. Кроме того, STAIR мобилен и может самостоятельно передвигаться по офису или жилищу. У него есть 3D-камера, которая фокусируется на объекте и подает в компьютер его трехмерное изображение, при помощи которого механическая рука может правильно захватить объект. Вообще, роботы научились брать объекты еще в 1960-х гг., и вскоре такие роботы появились на автомобильных заводах Детройта.

Но внешность обманчива. STAIR способен на большее. В него, в отличие от детройтских роботов, не заложен жесткий сценарий. Он действует сам по себе. Если вы, к примеру, попросите робота взять апельсин, то он проанализирует лежащие на столе предметы, сравнит их с тысячами изображений, заранее заложенных в его память, узнает апельсин и поднимет его со стола своей механической рукой. Кроме того, он способен идентифицировать предмет более точно, если возьмет в руку и будет поворачивать и рассматривать со всех сторон.

Чтобы проверить возможности STAIR, я перемешал предметы на столе и посмотрел, как робот будет действовать. STAIR корректно проанализировал новое расположение предметов, протянул руку и взял то, что я попросил. Создатели этого робота ставят перед собой цель научить его свободно передвигаться в доме или офисе, брать различные предметы, взаимодействовать с различными объектами и инструментами и даже разговаривать с людьми на упрощенном языке. Если это удастся, робот будет способен выполнять практически все функции, которые выполняет в офисе мальчик на побегушках. STAIR — образец подхода «сверху вниз»: все его действия запрограммированы от начала и до конца. (Хотя STAIR может распознавать предметы под разными углами, но количество предметов, которые он вообще способен распознать, пока ограничено. Окажись такой робот на улице в окружении случайных объектов, он будет мгновенно парализован.)

Позже у меня появилась возможность посетить Нью-Йоркский университет, где Янн ЛеКун (Yann LeCun) экспериментирует с совершенно другим созданием. Его робот носит имя LAGR (Learning applied to ground robots — обучение в приложении к наземным роботам) и представляет собой образец подхода «снизу вверх»: ему приходится учиться всему с нуля, натыкаясь на самые разные предметы. LAGR — робот размером с маленький гольф-мобильчик, оборудованный двумя цветными стереокамерами; он постоянно сканирует ландшафт и распознает встречающиеся предметы. После этого он начинает двигаться среди этих предметов, старательно их объезжая и узнавая что-то новое с каждым проездом. Робот оборудован GPS-приемником и имеет два инфракрасных датчика, способные засекать предметы на его пути. Он содержит три мощных процессора Pentium и подсоединен к гигабитной сети Ethernet. Мы с роботом отправились гулять по близлежащему парку, где LAGR учился объезжать возникающие на его пути помехи. Каждый раз, проходя маршрут, он приобретал новую сноровку и учился лучше обходить препятствия.

Между LAGR и STAIR есть очень важное различие, состоящее в том, что LAGR специально разработан для самообучения. Каждый раз, наталкиваясь на какое-то препятствие, он объезжает вокруг этого объекта и учится узнавать и миновать его, чтобы в следующий раз не натолкнуться. Если в памяти STAIR хранятся изображения тысяч предметов, то в памяти LAGR нет практически никаких изображений; вместо этого робот создает как бы мысленную карту всех встреченных препятствий и на каждом проходе обновляет и уточняет ее. В отличие от автомобиля-робота, который жестко запрограммирован и движется по маршруту, заранее проложенному для него при помощи системы GPS, LAGR движется совершенно самостоятельно, без всяких указаний со стороны человека. Вы говорите ему, куда двигаться, и он пускается в путь. Со временем подобных роботов можно будет обнаружить на Марсе, на поле боя и в наших жилищах.

Энтузиазм и энергия этих исследователей произвели на меня сильное впечатление. Сами они глубоко убеждены, что закладывают основы искусственного интеллекта и что когда-нибудь результаты их работы вызовут в обществе глобальные изменения, которые человечество сегодня только начинает осознавать. Но взгляд со стороны позволил мне увидеть, как далеко им еще до успеха. Даже тараканы способны распознавать предметы и учиться обходить их. Мы же пока находимся на той стадии, когда даже самые примитивные из созданий матери-природы способны победить в состязании с нашими самыми умными роботами.

 


Дата добавления: 2015-08-02; просмотров: 48 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Две проблемы с роботами| Экспертные системы

mybiblioteka.su - 2015-2024 год. (0.006 сек.)