Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Основные свойства электромагнитных волн

Читайте также:
  1. I. Основные богословские положения
  2. I. Основные принципы
  3. I. ОСНОВНЫЕ ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ПАРТИИ
  4. I. Основные цели конкурса
  5. I. Основные этапы игры.
  6. II г. Основные расчетные соотношения.
  7. II. Основные задачи

 

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени.

Как уже было отмечено выше, существование электромагнитных волн было теоретически предсказано великим английским физиком Дж.Максвеллом в 1864 году. Он проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Высказал гипотезу о существовании и обратного процесса: изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле. Максвелл впервые описывал динамику новой формы материи – электромагнитного поля, и вывел систему уравнений (уравнений Максвелла), связывающую характеристики электромагнитного поля с его источниками - электрическими зарядами и токами. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Рис. 2 а, б иллюстрируют взаимное превращение электрического и магнитного полей.

волна электромагнитный поле

Рисунок 2 - Взаимное превращение электрического и магнитного полей:

а) Закон электромагнитной индукции в трактовке Максвелла;

б) Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле

 

Деление электромагнитного поля на электрическое и магнитное зависит от выбора системы отсчета. Действительно, вокруг зарядов, покоящихся в одной системе отсчета, существует только электрическое поле; однако эти же заряды будут двигаться относительно другой системы отсчета и порождать в этой системе отсчета, кроме электрического, еще и магнитное поле. Таким образом, теория Максвелла связала воедино электрические и магнитные явления.

Если возбудить с помощью колеблющихся зарядов переменное электрическое или магнитное поле, то в окружающем пространстве возникает последовательность взаимных превращений электрических и магнитных полей, распространяющихся от точки к точке. Оба эти поля являются вихревыми, причем векторы и расположены во взаимно перпендикулярных плоскостях. Процесс распространения электромагнитного поля схематически показан на рис.3. Этот процесс, являющийся периодическим во времени и пространстве, представляет собой электромагнитную волну.

Рисунок 3 - Процесс распространения электромагнитного поля

 

Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля.

Итак, из теории Максвелла вытекает ряд важных выводов - основных свойств электромагнитных волн.

Существуют электромагнитные волны, т.е. распространяющееся в пространстве и во времени электромагнитное поле.

В природе электрические и магнитные явления выступают как две стороны единого процесса.

Электромагнитные волны излучаются колеблющимися зарядами. Наличие ускорения - главное условие излучения электромагнитных волн, т.е.

- всякое изменение магнитного поля создает в окружающем пространстве вихревое электрическое поле (рис.2 а).

- всякое изменение электрического поля возбуждает в окружающем пространстве вихревое магнитное поле, линии индукции которого расположены в плоскости, перпендикулярной линиям напряженности переменного электрического поля, и охватывают их (рис.2 б).

Линии индукции возникающего магнитного поля образуют с вектором «правый винт».

Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 4).

 

Рисунок 4 - Поперечные электромагнитные волны

 

Периодические изменения электрического поля (вектора напряженности Е) порождают изменяющееся магнитное поле (вектор индукции В), которое в свою очередь порождает изменяющееся электрическое поле. Колебания векторов Е и В происходят во взаимно перпендикулярных плоскостях и перпендикулярно линии распространения волны (вектору скорости) и в любой точке совпадают по фазе. Силовые лини электрического и магнитного полей в электромагнитной волне являются замкнутыми. Такие поля называют вихревыми.

Электромагнитные волны распространяются в веществе с конечной скоростью, и это ещё раз подтвердило справедливость теории близкодействия.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.

Скорость электромагнитных волн в вакууме с=300000 км/с. Скорость распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.

Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 4), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

 

ΔWэм = (wэ + wм)υSΔt.

 

При переходе из одной среды в другую частота волны не изменяется.

Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.

Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа.

Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены выдающимся физиком Московского университета П.Н. Лебедевым в 1900 г. Обнаружение столь малого эффекта потребовало от него незаурядной изобретательности и мастерства в постановке и проведении эксперимента. В 1900 г. ему удалось измерить световое давление на твердые тела, а в 1910 г. – на газы. Основную часть прибора П.И. Лебедева для измерения давления света составляли лёгкие диски диаметром 5 мм, подвешиваемые на упругой нити (рис. 5) внутри откачанного сосуда.

 

Рисунок 5 – Эксперимент П.И. Лебедева

 

Диски изготавливались из различных металлов, и их можно было заменять при проведении экспериментов. На диски направлялся свет от сильной электрической дуги. В результате воздействия света на диски нить закручивалась, и диски отклонялись. Результаты опытов П.И. Лебедева полностью согласовывались с электромагнитной теорией Максвелла и имели огромное значение для ее утверждения.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения. Так как давление световой волны очень мало, то оно не играет существенной роли в явлениях, с которыми мы сталкиваемся в обыденной жизни. Но в противоположных по масштабам космических и микроскопических системах роль этого эффекта резко возрастает. Так, гравитационное притяжение внешних слоев вещества каждой звезды к центру уравновешивается силой, значительный вклад в которую вносит давление света, идущего из глубины звезды наружу. В микромире давление света проявляется, например, в явлении световой отдачи атома. Ее испытывает возбужденный атом при излучении им света.

Световое давление играет значительную роль в астрофизических явлениях, в частности, в образовании кометных хвостов, звезд и т.д. Световое давление достигает значительной величины в местах фокусировки излучения мощных квантовых генераторов света (лазеров). Так, давление сфокусированного лазерного излучения на поверхность тонкой металлической пластинки может привести к её пробою, то есть к появлению отверстия в пластинке. Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.


Дата добавления: 2015-08-02; просмотров: 200 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ВИДЫ МАГНЕТИКОВ| Или почему производители автомобилей выдумывают собственные стандарты?

mybiblioteka.su - 2015-2024 год. (0.008 сек.)