Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Расчет магнитных цепей. Основным законом, используемым при расчетах магнитных цепей

Закон Ома для магнитной цепи. Линейные и нелинейные магнитные сопротивления | Ферромагнитные материалы и их свойства | Механическое действие магнитного поля на проводник с током |


Читайте также:
  1. I. Выбор электродвигателя и кинематический расчет привода.
  2. I. Кинематический расчет привода.
  3. II г. Основные расчетные соотношения.
  4. II. Проектировочный расчет червячной передачи.
  5. III. Расчет по I группе предельных состояний.
  6. III. Расчет фермы покрытия.
  7. III. Расчет цепной передачи.

Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.

(9.1)

Он формулируется следующим образом: линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, охватываемых этим контуром. Если контур интегрирования охватывает катушку с числом витков W, через которую протекает ток I, то алгебраическая сумма токов , где F - магнитодвижущая сила.

Обычно контур интегрирования выбирают таким образом, чтобы он совпадал с силовой линией магнитного поля, тогда векторное произведение в формуле (9.1) можно заменить произведением скалярных величин H·dl. В практических расчетах интеграл заменяют суммой и выбирают отдельные участки магнитной цепи таким образом, чтобы H1, H2,... вдоль этих участков можно было считать приблизительно постоянными. При этом (9.1) переходит в

(9.2)

где l1, l2, …, ln - длины участков магнитной цепи;
H1·l1, H2·l2 - магнитные напряжения участков цепи. Магнитным сопротивлением участка магнитной цепи называется отношение магнитного напряжения рассматриваемого участка к магнитному потоку в этом участке

,

где S - площадь поперечного сечения участка магнитной цепи,
l - длина участка.

Рассмотрим расчет магнитной цепи, изображенной на рис. 9.2.

Ферромагнитный магнитопровод имеет одинаковую площадь поперечного сечения S.
lср - длина средней силовой линии магнитного поля в магнитопроводе;
δ - толщина воздушного зазора.
На магнитопроводе размещена обмотка, по которой протекает ток I.
Рис. 9.2

Прямая задача расчета магнитной цепи заключается в том, что задан магнитный поток Ф и требуется определить магнитодвижущую силу F. Определим магнитную индукцию в магнитопроводе

.

По кривой намагничивания найдем значение напряженности магнитного поля H, соответствующее величине В.
Напряженность магнитного поля в воздушном зазоре

.

Магнитодвижущая сила обмотки

.

При обратной задаче расчета магнитной цепи по заданному значению магнитодвижущей силы требуется определить магнитный поток. Расчет такой задачи выполняется с помощью магнитной характеристики цепи F = f(Ф).
Для построения такой характеристики необходимо задаться несколькими значениями Ф и найти соответствующие значения F. С помощью магнитной характеристики по заданной магнитодвижущей силе определяется магнитный поток.

 


Дата добавления: 2015-08-02; просмотров: 52 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Основные определения| Магнитное поле и его параметры

mybiblioteka.su - 2015-2024 год. (0.006 сек.)