Читайте также:
|
|
Крестный отец современных исследований решения проблем — экономист и эрудит Герберт Саймон (1916-2001). Большая часть профессиональной карьеры Саймона, получившего в 1978 году нобелевскую премию по экономике, прошла в университете Карнеги Меллон, имеющем хорошие традиции исследований в области компьютеров и робототехники. Он был одним из многих экономистов, которые начали активно использовать в 1970-е компьютерные модели.
Саймон настолько увлекся компьютерами, что начал исследовать, как люди решают проблемы, именно для того, чтобы понять, каким образом можно запрограммировать компьютеры для решения сходных задач. В своей книге Human Problem Solving («Как люди решают проблемы»), опубликованной в 1972 году, Саймон вместе со своим коллегой Аланом Ньюэллом рассказал о результатах исследований, объектом которых были люди, решавшие математические и логические головоломки. В более поздней публикации, Scientific Discovery («Научное открытие», 1987 год), он попытался реконструировать на основе исторических данных ход рассуждений людей, сделавших важные научные открытия.
Саймон не обнаружил ничего особенно загадочного ни в решении скромных головоломок, ни в процессах, приведших к фундаментальным научным открытиям. Люди на основе своих догадок формулировали поддающиеся проверке гипотезы, делали несколько неверных ходов и в конце концов находили верный ответ. Никогда не случалось так, чтобы решение головоломки или научный прорыв оказывались результатом «чистого вдохновения».
Саймон и его коллеги предложили несколько популярных терминов, которые сейчас широко используются. Один из них — «пространство решений». Этот термин в его простейшей трактовке описывает все потенциальные решения проблемы. Когда компьютерная программа играет в шахматы, она ищет ход в пространстве решений. Она исследует все потенциальные ходы (и ответные ходы противника, и ответные ходы на ответные ходы противника… до разумного предела) для того, чтобы определить наиболее выгодное продолжение.
Саймон полагал, что именно поиск в пространстве решений — это та модель, которую использовали не только обычные люди для решения головоломок, но и великие Кеплер и Планк, работая над своими научными открытиями. Концепция пространства решений стала очень влиятельной. Когда вы пишете компьютерную программу для решения какой-то задачи, то определение пространства решений — очень полезный прием. После этого программа может найти оптимальное решение, используя впечатляющее преимущество в скорости перебора вариантов, которым обладают компьютеры.
Есть ряд ограничений для этого подхода. Пространство решений многих проблем включает такое множество вариантов, которое слишком велико для простого перебора даже при помощи самого быстрого компьютера (именно поэтому компьютеры не могут пока играть в «совершенные» шахматы, хотя уже и обыгрывают гроссмейстеров-людей). Еще одна досадная проблема связана с тем, что пространство решений бывает трудно определить и/или оно может оказаться не очень полезным для решения проблемы. Достаточно часто создается впечатление, что пространства решений не имеют отношения к тому, как люди в реальности решают проблемы.
В какую сторону должен поворачиваться ключ в замке дверцы автомобиля? В узком смысле слова можно сказать, что пространство решений состоит всего из двух вариантов: по часовой стрелке и против часовой стрелки. Но такое суждение показало бы, что вы не понимаете смысла вопроса. Эта маленькая задачка, которую предлагает Microsoft, требует прежде всего, чтобы вы хорошо обосновали свой ответ. Очевидно, что количество возможных доводов в пользу того, чтобы поворачивать ключи в замке по часовой или против часовой стрелки, гораздо больше двух!
В общем пространства решений головоломок и загадок часто нелегко определить. Не сразу ясно, каков масштаб проблемы или какие типы решений могут быть признаны легитимными, а еще менее ясно, какое решение может считаться правильным. Вот что делает проблему искусственного интеллекта такой сложной. Есть и более скромный аспект той же проблемы: она объясняет, почему на некоторые вопросы, заданные интервьюерами, так трудно ответить.
Недавние исследования когнитивных психологов, специализирующихся в исследованиях познавательных процессов, подвергли сомнению слишком оптимистичную точку зрения Саймона о рациональных механизмах решения проблем. Было показано, что никто не знает, как решать проблему, пока она не решена. В противоположность концепции пространства решений, предложенной Саймоном, психолог из Гарвардского университета Дэвид Перкинс говорит о «монотонном плато».[107]Если представить пространство возможных решений как пейзаж и считать, что правильное решение спрятано где-то на обширном плато, вам придется обыскать все это плато (и у вас нет никаких подсказок и догадок, где начинать поиск).
Перкинс сравнивает людей, решающих головоломки со старателями, которые пытались найти золото на Клондайке. Нет надежных признаков или ориентиров, которые могут подсказать, где именно искать золото. Вы можете сказать, что успех старателя зависит от везения и только от везения (вспомните поговорку «найти свой Клондайк»). Но если провести более тщательный анализ, то вы обнаружите, что некоторые старатели находят золото чаще, чем другие. Это потому, что они принимают концепцию «вероятностных решений» и умеют с ней работать. Их поиски золота не случайны — это методичное исследование, в ходе которого они принимают во внимание все известные геологические признаки, которые могут помочь найти золото.
Это представление о решении проблем отлично иллюстрирует задача (или антизадача) Microsoft, в которой спрашивается, как вы будет искать книгу в библиотеке, где книги не каталогизированы. Наставник Дзэн Синити Хасамацу говорил, что все «коаны» (так называют загадки дзэн-буддистов) можно свести к одной формуле: «Ничего нельзя поделать. А что вы будете делать?» Вот версия от Microsoft той же модели: нет возможности найти книгу — как вы ее найдете? Людей смущает не столько то, что это сложная задача, сколько то, что она такая нелогичная.
Очевидно, ответом не может быть: «Я заучил наизусть десятичную систему книжного каталога Дьюи и поэтому знаю, что книгу нужно искать на девятнадцатой полке в третьем ряду слева». Интервьюер вам возразит на это: «Вам ведь не сообщили, что это за книга, необязательно, что в библиотеке используют для расстановки книг десятичную систему Дьюи, но даже если и используют, вы не знаете плана здания, где размещена библиотека». Таким образом, не существует дедуктивного способа определения того, где находится книга. Все, что вы можете сделать, это искать в пространстве решений — то есть в самой библиотеке — настолько эффективно, насколько это возможно.
Дата добавления: 2015-08-02; просмотров: 56 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
V. Полное недоумение | | | Неопределенность и дизъюнкция |