Читайте также:
|
|
Представление числовой информации в ПК
Естественная форма представления чисел используется для хранения в памяти и обработки процессором целых чисел с фиксированной запятой. Каждому разряду ячейки памяти соответствует всегда один и тот же разряд числа. Запятая находится справа от меньшего разряда (вне разрядной сетке).
Для хранения и представления
целых неотрицательных чисел используется 1 ячейка памяти = 8 бит (1байт)
целых чисел со знаком используется 2 ячейки = 16 бит:
старший левый разряд - знак числа (0- положительное, 1–отрицательное)
Max значение целого положит. числа A=2n-1 – 1 (n-число разрядов) = 3276710
больших целых чисел используется 4ячейки = 32 бит
отрицательных чисел используется дополнительный код, Дополнительный код отрицательного числа A, хранящегося в n-ячейках 2n - |A|
Экспоненциальная форма представления чисел обычно используется для записи очень больших или очень малых чисел, кот в естественной форме содержат большое количество незначащих нулей (1 000 000 = 1·106). Вещественные числа (конечные и бесконечные десятич. дроби) записываются в формате с плавающей запятой, т.е. положение запятой в числе может меняться.
Формат чисел с плавающей запятой: A = m · q n
m – мантисса числа q – основание системы счисления n – порядок числа
например:
Естественная форма | Экспоненциальная форма |
десятичная система счисления 16000000000000000 = 1,6 ·10 16 | 0,00000000000000016 = 1,6 ·10 -16 |
двоичная система счисления 11000000000000000 = 1,1 ·2 16 | 0,00000000000000011 = 1,1 ·2 -16 |
Диапазон изменения чисел определяется количеством разрядов, отведенный для хранения порядка числа, точность определяется количеством разрядов, отведенных для хранения мантиссы.
Арифметические операции чисел в формате с плавающей запятой:
При сложении и вычитании сначала производится выравнивание порядков (до большего), а затем производится операция сложения или вычитания мантисс.
При умножении порядки складываются, а мантиссы перемножаются.
При делении – их порядка делимого вычитается порядок делителя, мантисса делимого делится на мантиссу делителя.
Например:
0,1·23 + 0,1·25 = 0,001·25 + 0,100·25 = 0,101·25
0,1·23? 0,1·25 = 0,01·28 = 0,1·27
Дата добавления: 2015-08-10; просмотров: 63 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Измерение информации | | | Двоичное кодирование текста |