Читайте также: |
|
ИЗУЧЕНИЕ ЭФФЕКТА ХОЛЛА
Цель работы: Измерение холловской разности потенциалов в полупроводниковой пластине и определение концентрации, подвижности и знака носителей заряда, участвующих в токе.
Введение
Эффект Холла - это возникновение поперечной разности потенциалов при пропускании тока через металлическую или полупроводниковую пластинку, помещенную в магнитное поле, таким образом, чтобы вектор индукции магнитного поля () было направлено перпендикулярно вектору плотности тока ().
C помощью эффекта Холла (1879 г.) можно измерить зависимость плотности тока от концентрации свободных электронов.
Сущность эффекта Холла, на основе классической электронной теории, заключается в следующем. Если проводник, по которому течет ток, поместить в магнитное поле, то на заряды движущиеся в магнитном поле действует сила Лоренца, направленная перпендикулярно их движению. Если, например, электроны движутся в прямоугольном проводнике на рис. 1 влево, то направленное в плоскость чертежа магнитное поле будет действовать силой, направленной вверх. В результат электроны будут двигаться вверх, а положительные заряды к нижней поверхности проводника.
Вследствие этого между поверхностями проводника А и В возникает разность потенциалов. заряда.
Рис. 1
Она будет увеличиваться до тех пор, пока не наступит равновесное состояние, при котором сила холловского электрического поля станет раной магнитной силе Лоренца:
(1)
Или
Так как магнитное поле направлено перпендикулярно к линиям тока, то напряженность поперечного электрического поля равна по абсолютной величине
(2)
Тогда разность потенциалов поперечного электрического поля между поверхностями проводника
(3)
где d-расстояние между поверхностями А и В проводника.
Средняя скорость направленного движения носителей тока связана с плотностью тока j соотношением j = nqV, где n- концентрация носителей заряда(число носителей в единице объема, q-заряд носителя). Следовательно,
(4)
Выразив плотность тока через силу тока I:
(5)
(b-толщина пластины) и подставив выражения (5) и (4) в (3), получим
(6)
(7)
Коэффициент называют постоянной Холла.
Формула (7) получена без учёта закона распределения электронов по скоростям. Более точный расчет с учетом закона распределения носителей по скоростям в рамках классической статистики приводит к выражению для постоянной Холла
(8)
В полупроводниках с атомной решеткой, например для кремния,
поэтому
Для полупроводников с ионной связью, например для интерметаллического соединения арсенида галлия А = 1. В этом случае применима формула (7).
Соотношение (6) позволяет определить постоянную Холла и концентрацию носителей заряда n, в образце из опытных данных:
(9)
Если известно, то, измеряя и I, можно найти . Этот способ измерения используется в технике (датчики Холла).
Важной характеристикой полупроводника является подвижность в нем носителей заряда, под которой подразумевается средняя скорость, приобретаемая носителем в поле, напряженность которого равна единице. Если в поле напряженностью носители приобретают скорость , то подвижность их u, равна:
( 10)
Используя связь между плотностью тока, напряженностью электрического поля и проводимостью и учитывая (4) и(10), можно выразить подвижность через проводимость σ и концентрацию носителей заряда:
(11)
Из соотношений (7) и (11) следует:
(12)
Таким образом, для определения подвижности носителей,необходимо измерить и σ.
Из (7) следует, что знак постоянной Холла совпадает со знаком носителей заряда. У полупроводников постоянная Холла может быть отрицательной и положительной, так как существует два типа проводимости. У полупроводников с электронной проводимостью(полупроводников n-типа) знак постоянной Холла отрицателен. Если электропроводимость полупроводников осуществляется положительными зарядами или так называемыми «дырками», то знак постоянной Холла положителен. Такие полупроводники называются дырочными (полупроводниками р-типа). Если в полупроводнике одновременно осуществляется оба типа проводимости, то по знаку постоянной Холла можно судить о том, какой из них является преобладающими.
Зависимость знака постоянной Холла от знака носителей заряда, создающих в данном веществе можно понять из рис.2, на котором демонстрируется эффект Холла для образцов с положительными и отрицательными носителями.
|
Рис. 2
Следовательно, при одинаковом направлении тока и магнитной индукции () сила Лоренца, действующая на положительные и отрицательные носители, имеет одинаковое направление.
Дата добавления: 2015-07-25; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
К теме 4,5 | | | Метод измерения и описание аппаратуры |