Читайте также:
|
|
Партии | Голоса | Избира- тельная квота: V/(N+2)= 90/(5+2)=12 [20] | Число мандатов (первое распре- деление) | Остатки голосов | Дополнительные мандаты (второе распределение) | Общее число мандатов |
А Б В Г Д Всего: | : 12 = |
Вторая крупная партия, партия Б, получает теперь два места, а партия Г - ни одного. Обладателей всех мандатов удалось установить при первом распределении, не обращаясь к остаткам голосов (что не является тем не менее общим правилом). При любых обстоятельствах, однако, чем меньше размер избирательной квоты, чем меньшими являются остатки голосов при первом распределении, тем в лучшем положении оказываются крупные партии и блоки; небольшие группировки при этом, однако, существенно проигрывают.
При каждом из рассмотренных выше методов определения избирательной квоты все же сохраняются остатки голосов, которые в зависимости от вида квоты могут быть больше или меньше. Установление обладателей депутатских мандатов поэтому приходится осуществлять в два этапа, проводить два распределения мест сначала на основе всех, затем на базе только остаточных голосов. Нельзя ли все же попытаться определить обладателей всех мандатов сразу, в один этап? Для этого необходимо изменить сам порядок определения избирательной квоты: определять ее, принимая в расчет не сумму всех голосов избирателей, а количество голосов, полученных каждой партией в отдельности.
Такой метод носит название метод делителей (или метод наибольшей средней); он также широко распространен в современном мире. Наиболее известная ее разновидность была предложена в конце прошлого столетия бельгийским математиком Д’Ондтом и носит название метод (или формула) Д’Ондта. Целью данного метода является “улучшение формулы наибольшего остатка путем нахождения избирательной квоты меньшей, чем квота Хэра, которая позволяет нам распределить все места точно в соответствии с правилом наибольшего остатка, но без необходимости принимать в расчет какие-либо остаточные голоса” [21]. Для этого число голосов, полученное каждой партией, делится последовательно на 1, 2, 3 и т.д. (отсюда название данного метода - метод делителей) [22]. Затем полученные частные по степени убывания расставляются в ряд, состоящий из N чисел, где N равняется общему числу замещаемых мандатов. Последнее, “энное” частное и составляет квоту Д’Ондта, которая, как видно из таблицы (пример №4), значительно ниже естественной квоты. Сколько раз данная квота укладывается в голосах определенной партии (или, что то же самое, сколько членов ряда вплоть до стоящего под номером N получены в результате деления голосов данной партии), столько она и получит мандатов.
Дата добавления: 2015-07-25; просмотров: 118 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Пример №1. Распределение 5 депутатских мест на основе метода естественной квоты и правила наибольших остатков | | | Пример №5. Датский метод |