Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Классификация элементарных частиц

ВВЕДЕНИЕ | Ключевые открытия в физике 20 века | Теория относительности | Словарь |


Читайте также:
  1. II. Классификация мероприятия
  2. II. Классификация производственных затрат
  3. Абсолютный дух (частица божественного разума).
  4. АВС-классификация
  5. АФФЕКТИВНАЯ КЛАССИФИКАЦИЯ НАМЕРЕНИЙ-И-ДЕЙСТВИЙ
  6. Б.2 В. 5 Ряд Лорана. Классификация изолированных особых точек. Вычеты.
  7. Белки, биологическая роль, функциональная классификация белков.

Со времен Ньютона и Лейбница под понятием "элементарная частица" подразумевался бесструктурный точечный объект. По мере накопления знаний о природе материи на протяжении только последних ста лет элементарными частицами считали сначала атомы, потом ядра, адроны. К 60-м годам прошлого века число элементарных частиц достигло сотни. Возникли сомнения в их "элементарности". Казалось, что природа не может быть столь расточительной. Все разнообразие этих частиц попытались объяснить наличием меньшего количества унифицированных элементарных объектов [4].

Физика элементарных частиц в пятидесятые годы находилась в стадии формирования. Основными средствами экспериментальных исследований в этом отделе физики были ускорители, «выстреливавшие» пучок частиц в неподвижную мишень: при столкновении налетающих частиц с мишенью рождались новые частицы. С помощью ускорителей экспериментаторам удалось получить несколько новых типов элементарных частиц, помимо уже известных протонов, нейтронов и электронов. Физики-теоретики пытались найти некоторую схему, которая позволила бы классифицировать все новые частицы.

На решении этой труднейшей задачи и сосредоточил свое внимание Гелл-Манн. В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему ученый назвал восьмеричным путем (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Манна аналогичную классификацию частиц предложил израильский физик Ювал Нееман. [4]

Восьмеричный путь американского ученого часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных еще элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц. [1]

В 1963 году Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришел и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками. Существуют также антикварки Различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы.

Гелл-Манну в 1969 году была вручена Нобелевская премия по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий» [3].

 

Лазер

Слово «лазер» образовано из начальных букв длинной фразы на английском языке, означающей в дословном переводе: «усиление света с помощью вынужденного излучения».

В 1917 году А. Эйнштейн в одной из статей теоретически показал, что согласовать вспышки излучения отдельных атомов между собой позволило бы внешнее электромагнитное излучение. Оно может заставить электроны разных атомов одновременно взлететь на одинаково высокие возбужденные уровни. Этому же излучению нетрудно сыграть роль и спускового крючка при «световом выстреле»: направленное на кристалл, оно может вызвать одновременное возвращение на исходные орбиты сразу нескольких десятков тысяч возбужденных электронов, что будет сопровождаться могучей ослепительно яркой вспышкой света, света практически одной длины волны, или, как говорят физики, монохроматического света. [8]

В 1939 году молодой советский ученый В.А. Фабрикант вернулся к введенному Эйнштейном в физику понятию вынужденного излучения. Но создание лазера произошло только в пятидесятые годы благодаря творческой работе советских ученых Прохорова, Басова и американца Чарльза Харда Таунса (1915).

Анализируя предельную точность микроволновых молекулярных стандартов частоты, которая определяется в первую очередь шириной молекулярной линии поглощения, Прохоров и Басов предложили использовать эффект резкого сужения линии в молекулярных пучках.

Была предложена идея о том, что, изменяя искусственно населенности уровней в молекулярном пучке, т. е. создавая неравновесные условия (или как бы свою «температуру», определяющую населенность этих уровней), можно существенно изменить интенсивность линии поглощения. Если резко снизить число молекул на верхнем рабочем уровне, отсортировывая из пучка такие частицы, например, с помощью неоднородного электрического поля, то интенсивность линии поглощения возрастает. В пучке как бы создана сверхнизкая температура. Если же таким способом убрать молекулы с нижнего рабочего уровня, то в системе будет наблюдаться усиление за счет индуцированного излучения. Если усиление превышает потери, то система самовозбуждается на частоте, которая определяется по-прежнему частотой данного квантового перехода молекулы. В молекулярном же пучке будет осуществлена инверсия населенностей, т. е. создана как бы отрицательная температура. Так возникла идея молекулярного генератора, изложенная в хорошо известном цикле классических совместных работ A.M. Прохорова и Н.Г. Басова 1952—1955 годов. [2]

Отсюда начала свое развитие квантовая электроника — одна из самых плодотворных и наиболее быстро развившихся "областей современной науки и техники. Принципиальным было предложение Прохорова и Басова о новом методе получения инверсии населенностей в трехуровневых (и более сложных) системах с помощью насыщения одного из переходов под действием мощного вспомогательного излучения. Это так называемый «метод трех уровней», получивший позднее также название метода оптической накачки. Именно он позволил в 1958 году Фабри-Перо сформировать реальную научную основу для освоения других диапазонов. Этим успешно воспользовался в 1960 году Т. Мэйман при создании первого лазера на рубине.

В 1964 году Басов, Прохоров и Таунс (США) стали лауреатами Нобелевской премии, которой они были удостоены за фундаментальные исследования в области квантовой электроники, приведшие к созданию мазеров и лазеров. [8]

 


Дата добавления: 2015-07-16; просмотров: 48 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Модель атома| Полупроводники

mybiblioteka.su - 2015-2024 год. (0.007 сек.)