Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Энергообеспечение мышц

ФАКТОРЫ, ОГРАНИЧИВАЮЩИЕ РАБОТОСПОСОБНОСТЬ СПОРТСМЕНА | Снижение энергообеспечения мышц | Снижение иммунологической реактивности | Дополнительные факторы | Фармакологическая поддержка энергетического обеспечения, физической работоспособности различной направленности | Препараты макроэргов | Углеводсодержащие пищевые продукты с высоким гликемическим индексом | Энергетическое обеспечение тренировочного процесса в течение дня | Энергизаторы | Регуляторы липидного обмена |


Энергетическое обеспечение клетки включает три составляющие: химическую в виде набора макроэргов, локализованных в цитоплазме; электрическую (мембранный потенциал) и осмотическую (неравномерное распределение ионов по разным сторонам клеточной мембраны). Все три составляющие равнозначны и взаимосвязаны (рис. 1).

Мышечные клетки располагают двумя энергопреобразующими системами: дыхательной цепью и гликолизом. Регуляция работы каждой из систем и их взаимодействие в значительной степени реализуются на молекулярном уровне. Обе системы полиферментные, т е. образование макроэргов – результат различных последовательных реакций.

В силу конструктивных особенностей мышечной ткани глико-литический процесс может стать оптимальным только через 40-50 с после начала мышечных сокращений. Дыхательная цепь еще более инертна, и она по энергопроизводительности может сравниваться с гликолизом только через 70 с после начала работы.

Для начала работы (особенно в спринте) требуется огромная, быстро реализуемая энергия. Во время бега спринтеры расходуют свои внутренние резервы в виде макроэргических соединений. Первое «резервное топливо» – молекулы АТФ. Депонированная в АТФ энергия может быть быстро преобразована в мышечную.

Имеющиеся запасы АТФ в тканях невелики, их хватает спринтеру лишь на 2 с забега. Затем начинает отдавать энергию другое энергетическое депо, находящееся в мышечных клетках – креатинфосфат. Его запасов хватает еще на 10-12 с. Поэтому на победу в спринте могут рассчитывать лишь те спортсмены, организм которых способен накапливать значительный резерв высокоэнергетических веществ – макроэргов (фосфагенов).

Универсальный источник энергии в клетке (в том числе и мышечной) – свободная энергия макроэргической фосфатной связи аденозинтрифосфата (АТФ), освобождаемая при гидролизе (распаде) АТФ до АДФ[1] и АМФ[2] и неорганического фосфора. Если концентрация АТФ велика, то ингибируются ферменты, участвующие в его синтезе. При снижении концентрации АТФ и увеличении концентрации АДФ активируется дыхательная цепь, а при росте концентрации АМФ – гликолиз.

При систематически повышенном энергетическом запросе включается более высокий, клеточный уровень регуляции энерго-преобразующей системы, приводящий к индукции (а при снижении энергетического запроса – к репрессии) синтеза новых ферментов для энергетических цепей. Индукция или репрессия ферментов становятся в этом случае наиболее простым и экономичным способом адаптации клеток к новым условиям (табл. 1).

Поддержание энергетического гомеостаза в клетке осуществляется в автоматическом режиме при сохранении постоянства внутриклеточной среды (табл. 2).

 

Таблица 1


Дата добавления: 2015-07-19; просмотров: 53 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
СИСТЕМА КЛЕТОЧНОЙ РЕГУЛЯЦИИ НА МОЛЕКУЛЯРНОМ УРОВНЕ| Коррекция энергообеспечения

mybiblioteka.su - 2015-2024 год. (0.007 сек.)