Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

О том, что бесконечная линия есть треугольник

ГЛАВА 1 | ПРЕДВАРИТЕЛЬНЫЙ ОБЗОР НИЖЕСЛЕДУЮЩЕГО | О ТОМ, ЧТО ТОЧНАЯ ИСТИНА НЕПОСТИЖИМА | АБСОЛЮТНЫЙ МАКСИМУМ, СОВПАДАЯ С МИНИМУМОМ, ПОНИМАЕТСЯ НЕПОСТИЖИМО | МАКСИМУМ ЕСТЬ ЕДИНОЕ | АБСОЛЮТНАЯ НЕОБХОДИМОСТЬ МАКСИМУМА | О ТОМ, ЧТО МАТЕМАТИКА ЛУЧШЕ ВСЕГО ПОМОГАЕТ НАМ В ПОНИМАНИИ РАЗНООБРАЗНЫХ БОЖЕСТВЕННЫХ ИСТИН | Глава 12 | О ТОМ, ЧТО МАКСИМУМ, В ПЕРЕНОСНОМ СМЫСЛЕ, ОТНОСИТСЯ КО ВСЕМУ КАК МАКСИМАЛЬНАЯ ЛИНИЯ К ЛИНИЯМ | ДРУГИЕ ГЛУБОЧАЙШИЕ УЧЕНИЯ, ПРОЯСНЯЮЩИЕСЯ ИЗ ТЕХ ЖЕ ОСНОВАНИЙ |


Читайте также:
  1. I. Семейная линия.
  2. Lazarev gallery 6 линия В.О., 5/5
  3. А, Треугольник, Насилие
  4. БЕЗСУЛЬФАТНАЯ ЛИНИЯ
  5. Бермудский треугольник попыток
  6. Бесконечная детоксикация
  7. Бесконечная дорога

37 Воображение, неспособное выйти за пределы чувственных вещей, не улавливает, что линия может быть треугольником, потому что количественное различие обоих несоизмеримо; по для разума это нетрудно.

В самом деле, уже доказано, что максимальным и бесконечным может быть только одно. Ясно также, раз всякие две стороны любого треугольника в сумме не могут быть меньше третьей, что если у треугольника одна из сторон бесконечна, две другие будут не меньше. Потом, поскольку любая часть бесконечности бесконечна, у треугольника с одной бесконечной стороной другие тоже обязательно будут бесконечными. Но нескольких бесконечностей не бывает, и за пределами воображения ты трансцендентно понимаешь, что бесконечный треугольник не может состоять из нескольких линий, хоть этот максимальный, не составной и простейший треугольник есть истиннейший треугольник, обязательно имеющий три линии, и, значит, единственная бесконечная линия с необходимостью оказывается в нем тремя, а три — одной, простейшей. То же в отношении углов: в нем будет только один бесконечный угол, и этот угол — три угла, а три угла — один. Не будет этот максимальный треугольник и состоять из сторон и углов, но бесконечная линия и угол в нем — одно и то же, так что линия есть и угол, раз весь треугольник — линия.

38 Понять это тебе поможет еще восхождение от количественного треугольника к не-количественному (non-quantum). Всякий количественный треугольник, как известно, имеет три угла, равные двум прямым, и чем больше один угол, тем меньше другие. Хотя каждый угол треугольника может увеличиваться только до двух прямых исключительно, а не максимально, в соответствии с нашим первым принципом, однако допустим, что он увеличивается максимально до двух прямых включительно, оставаясь при этом треугольником. Toгда окажется, что у треугольника один угол, который есть три, и три образуют один. Точно так же ты сможешь убедиться, что треугольник есть линия. Любые Две стороны количественного тpeyгольника в сумме

настолько длиннее третьей, насколько образуемый ими угол меньше двух прямых; например, поскольку угол ВАС много меньше двух прямых, линии ВА и АС в сумме много длиннее ВС. Значит, чем больше этот угол, например угол ВDС, тем меньше линии BD и DC превышают линию ВС и тем меньше поверхность. Если допустить, что этот угол приравняется двум прямым, весь треугольник разрешится в простую линию. Таким допущением, у количественных треугольников невозможным, пользуйся для восхождения к не-количественным, у которых, как видишь, невозможное для количественных становится совершенно необходимым. Отсюда тоже ясно, что бесконечная линия есть максимальный треугольник, как и требовалось доказать.

ГЛАВА 15


Дата добавления: 2015-07-19; просмотров: 69 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ОБ ИЗМЕНЕНИЯХ, ПРЕТЕРПЕВАЕМЫХ МАКСИМАЛЬНОЙ И БЕСКОНЕЧНОЙ ЛИНИЕЙ| О ТОМ, ЧТО ЭТОТ ТРЕУГОЛЬНИК БУДЕТ КРУГОМ И ШАРОМ

mybiblioteka.su - 2015-2024 год. (0.01 сек.)