Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Основные законы алгебры логики и правила преобразования логических выражений

Читайте также:
  1. I. Анализ инженерно-геологических условий площадки строительства
  2. I. Определение символизма и его основные черты
  3. I. ОСНОВНЫЕ ЗАДАЧИ ВНЕШНЕЙ ПОЛИТИКИ
  4. I. Основные принципы
  5. I.I.5. Эволюция и проблемы развития мировой валютно-финансовой системы. Возникновение, становление, основные этапы и закономерности развития.
  6. III. О делении общей логики на аналитику и диалектику
  7. III. Основные права и обязанности Обучающихся

В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (эквивалентные) преобразования логических выражений. Преобразования называются равносильными, если истинные значения исходной и полученной после преобразования логической функции совпадают при любых значениях входящих в них логических переменных.

Для простоты записи приведем основные законы алгебры логики для двух логических переменных А и В. Эти законы распространяются и на другие логические переменные.

1. Закон противоречия:

2. Закон исключенного третьего:

3. Закон двойного отрицания:

4. Законы де Моргана:

5. Законы повторения: A & A = A; A v A = A; В & В = В; В v В = В.

6. Законы поглощения: A ∨ (A & B) = A; A & (A ∨ B) = A.

7. Законы исключения констант: A ∨ 1 = 1; A ∨ 0 = A; A & 1 = A; A & 0 = 0; B ∨ 1 = 1; B ∨ 0 = B; B & 1 = B; B & 0 = 0.

8. Законы склеивания:

9. Закон контрапозиции: (A ⇔ B) = (B ⇔ A).

Для логических переменных справедливы и общематематические законы. Для простоты записи приведем общематематические законы для трех логических переменных A, В и С:

1. Коммутативный закон: A & B = B & A; A ∨ B = B ∨ A.

2. Ассоциативный закон: A & (B & C) = (A & B) & C; A ∨ (B ∨ C) = (A ∨ B) ∨ C.

3. Дистрибутивный закон: A & (B ∨ C) = (A & B) ∨ (A & C).

Как уже отмечалось, с помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций: первыми выполняются операции в скобках, затем в следующем порядке: инверсия (отрицание), конъюнкция (&), дизъюнкция (v), импликация (⇒), эквиваленция (⇔)

Выполним преобразование, например, логической функции

применив соответствующие законы алгебры логики.


Дата добавления: 2015-07-19; просмотров: 57 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Логические переменные и логические операции| Логические функции и таблицы истинности

mybiblioteka.su - 2015-2024 год. (0.006 сек.)