Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Понятие простого и сложного процента

Задача 4. Пересчет показателей | Математико-статистические методы изучения связей | Корреляционный анализ | Регрессионный анализ | Кластерный анализ | Метод построения дерева решений | Линейное программирование | Анализ чувствительности | Исходные данные для анализа чувствительности | Временная ценность денег |


Читайте также:
  1. I. Понятие афоризма
  2. I.I Понятие и виды доверенности
  3. VII Понятие бедности в современной России
  4. А) Понятие о парадигме.
  5. Анализ работы: понятие, основные этапы и методы. Описание и спецификация работы.
  6. Б). Сознание и познание. Сущность мышления. Проблема идеального в философии. Понятие логического.
  7. Билет 1. Пенсионная реформа в РФ – понятие, сущность, законодательная база.

 

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых операциях является 1 год, наиболее распространен вариант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления:

· схема простых процентов;

· схема сложных процентов.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление. Пусть исходный инвестируемый капитал равен Р, требуемая доходность - r (в долях единицы). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину Р ∙ r. Таким образом, размер инвестированного капитала (Rn) через n лет будет равен:

 

 

Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и не востребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала будет равен:

 

 

Как же соотносятся величины Rn и Fn? Это чрезвычайно важно знать при проведении финансовых операций. Все зависит от величины п. Сравним множители наращения по простым и сложным процентам, т.е. сравним (1 + п ∙ r)и (1 + r) п. Очевидно, что при п = 1 эти множители совпадают и равны (1 + r). Можно показать, что при любом r справедливы неравенства (1 + n ∙ r) > (1 + r) n, если 0 < n < 1 и (1 + п ∙ r) < (1 + r)n, если n > 1. Итак:

 

· Rn > Fn при 0 < n < 1;

· Rn < Fn при n >1.

Графически взаимосвязь Fn и Rn можно представить следующим образом (рис. 2.5):

 

Такимобразом, в случае ежегодного начисления процентов для лица, предоставляющего кредит:

· более выгодной является схема простых процентов, если срок ссуды менее одного года (проценты начисляются однократно в конце периода);

· более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);

· обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении процентов.

В случае краткосрочных ссуд со сроком погашения до одного года в качестве показателя и берется величина, характеризующая удельный вес длины подпериода (дни, месяц, квартал, полугодие) в общем периоде (год). Длина различных временных интервалов в расчетах может округляться: месяц - 30 дней; квартал - 90 дней; полугодие - 180 дней; год - 360 (или 365, 366) дней.

Пример 2.15. Рассчитать наращенную сумму с исходной суммы в 1 тыс. руб. при размещении ее в банке на условиях начисления простых и сложных процентов, если: а) годовая ставка 20%; б) периоды наращения: 90 дней, 180 дней, 1 год, 5 лет, 10 лет. Полагать, что в году 360 дней.

Результаты расчетов имеют следующий вид:

(тыс. руб.)

 

Таким образом, если денежные средства размещены в банке на срок в 90 дней (менее одного года), то наращенная сумма составит: при использовании схемы простых процентов - 1,05 тыс. руб.; при использовании схемы сложных процентов - 1,0466 тыс. руб. Следовательно, более выгодна первая схема (разница - 3,4 руб.). Если срок размещения денежных средств превышает один год, ситуация меняется диаметрально: более выгодна становится схема сложных процентов, причем наращение в этом случае идет очень быстрыми темпами. Так, при ставке в 20% годовых удвоение исходной суммы происходит следующим темпом: при использовании схемы простых процентов - за 5 лет, а при использовании схемы сложных процентов - менее чем за четыре года.

 

Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности.

В практике деятельности хозяйствующих субъектов часто встречаются финансовые контракты, предусматривающие не единичные выплаты в начале и в конце срока действия контракта, а ряды последовательных выплат. Самым наглядным примером такого денежного потока является кредит, получаемый одномоментно или поэтапно с обязательством погашать его в течение нескольких последовательных периодов заранее оговоренными частями, равными или неравными. Расчеты финансовых характеристик таких денежных потоков аналогичны рассмотренным, с той лишь разницей, что каждая из выплат рассматривается как отдельная и независимая от других. Наращенная или дисконтированная стоимость каждой выплаты определяется по указанным выше формулам, а их приведенные к одному моменту стоимости суммируются.

Формула сложных процентов является одной из базовых формул в финансовых вычислениях, поэтому для удобства расчетов часто пользуются специальными финансовыми таблицами, в которых табулированы значения мультиплицирующих множителей вида (1 + r) n, и некоторых других.

Подробно об использовании финансовых таблиц можно узнать в специальной литературе, например, [Ковалев, Уланов, 1999].


Дата добавления: 2015-07-19; просмотров: 179 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Операции наращения и дисконтирования| Области применения схемы простых процентов

mybiblioteka.su - 2015-2024 год. (0.008 сек.)