Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Нагрудный почетный знак советского врача

Читайте также:
  1. II. Диета швейцарского врача М.Бирхер-Беннера
  2. III. Систематизированный опыт зарубежного проектирования индивидуального жилого дома для врача
  3. ВЗАИМООТНОШЕНИЯ ВРАЧА И ПЕДАГОГА-ДЕФЕКТОЛОГА
  4. Глава 25 Побег! Посетители или как обмануть упертого главврача
  5. Дизайн Советского Союза.
  6. Добрый день, Гер Шредер - вхожу в кабинет главврача, обладатель которого умиротворенно сидит за письменным столом, склонившись над ворохом каких-то бумаг.
  7. Костюм средневекового врача

 

Правительство одобрило линию врача-активиста Левита, заявившего: «Советский пролетариат, а вслед за ним и большинство русских медиков уже давно признали возможность наследования приобретенных признаков; от высказываний генетиков веет глубоким пессимизмом и немощью». Выражая мнение коллег, Левит полагал, что существование наследственных болезней противоречит принципам профилактической медицины и тем «обезоруживает врача». Большой популярностью пользовались взгляды австрийского биолога П. Каммерера, утверждавшего: «…тогда как менделевская генетика делает людей „рабами прошлого“, ламаркизм обещает произвести их в „капитаны будущего“. Венский марксист призвал к созданию социалистической евгеники.

С началом культурной революции молодая наука понесла серьезные кадровые потери. Филипченко покинул пост руководителя Центра научной евгеники, а в мае 1930 года умер от менингита. Приблизительно в то же время Кольцова отстранили от преподавания в МГУ и уволили всех сотрудников его кафедры экспериментальной биологии. Собранная с большим трудом группа талантливых генетиков была разогнана. В соответствии с новой партийной идеологией в стране осуждались попытки соединить биологическое и социальное начала. Деятельность ученых, занимавшихся вопросом наследственности, объявили «биологизаторством».

В 1930 году упразднили Бюро по евгенике; затем прекратило существование Русское евгеническое общество. Однако окончательный разгром «буржуазной теории» совпал с возникновением фашизма в Германии. Приход к власти Гитлера создал непреодолимые идеологические проблемы вследствие использования нацистами извращенной евгеники.

Учреждением новой дисциплины, медицинской генетики, предполагалось убить двух зайцев: улучшить здоровье пролетариата и отработать методику идейной борьбы с расистской теорией фашистов. В марте 1935 года Институт генетики АН был переименован в Медико-генетический институт имени М. Горького, который возглавил Левит. В итоге евгеника трансформировалась в идеологически здоровую дисциплину. Новый политический поворот под русским названием «1937 год» или западным «Большой террор», привел к закрытию едва начавшего работу учреждения. В июле 1937 года Левита сняли с поста директора, а через несколько месяцев он был арестован. После короткой ревизии Медико-генетический институт ликвидировали. Таким образом, медицинская генетика просуществовала не дольше почившей евгеники. Возрождение обеих наук состоялось лишь в 1960-х годах.

Характерными чертами четвертого этапа истории генетики (приблизительно 1940–1955 годы) было бурное развитие работ, касавшихся физиологических и биохимических признаков. В сферу генетических опытов вошли новые объекты — микроорганизмы и вирусы. Возможность получения от них огромного по численности потомства, причем за очень короткое время, резко повысила действенность генетического анализа. Это позволило исследовать многие, недоступные ученым ранее формы генетических явлений. В 1944 году состоялось еще одно революционное открытие, сделанное в Америке. Микробиолог Освальд Теодор Эйвери (1877–1955 годы) установил существование специфического вещества, ответственного за иммунологические процессы. Работая совместно с группой коллег, он открыл, что фактором, обеспечивающим генетическую трансформацию, являются молекулы ДНК (дезоксирибонуклеиновой кислоты). Представив ее в качестве носителя наследственной информации, американцы заложили основы молекулярной генетики. Наиболее значительным достижением конца этого периода стало доказательство следующего факта: инфекционным элементом вирусов служит их нуклеиновая кислота (ДНК или РНК).

Начало современного этапа истории науки о наследовании, генетики, относится к 1970-м годам, когда наряду со стремительным развитием всех сложившихся направлений вперед выдвинулась молекулярная генетика. Немного раньше группа украинского академика Сергея Михайловича Гершензона (1906–1998 годы), изучая размножение одного из вирусов насекомых, получила новые данные в пользу того, что генетическая информация может передаваться как от ДНК к РНК, так и в обратном направлении. Этот процесс назвали обратной транскрипцией.

Следствием открытия стали успешные разработки принципиально новых форм прикладной генетики, например использование ее в лечении или предотвращении злокачественных опухолей. Однако проблемой возникновения рака еще в середине 1940-х годов занимался советский вирусолог Лев Александрович Зильбер (1894–1966 годы). Замечательный микробиолог и иммунолог, академик АМН, он сформулировал вирусогенетическую теорию происхождения опухолей, заложив основы иммунологии рака. Будучи братом известного писателя В. А. Каверина, Лев Александрович, несомненно, помогал ему в создании романа «Открытая книга», где на примере судьбы главной героини убедительно и ярко рассказывается о становлении российской вирусологии.

Информация обо всех многообразных признаках передается от поколения к поколению, часто реализуясь у потомков в сильно искаженном виде. Генетические исследования помогают в познании закономерностей наследования, следовательно, в изыскании путей практического использования этих закономерностей. Таким образом, генетика призвана рассматривать четыре основных вопроса: хранение и кодирование генетической информации; ее передачу; реализацию и механизм изменения.

Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения прикладных задач. Достижения генетиков используются для повышения продуктивности домашних животных, выращивания культурных растений и промышленных микроорганизмов. В сфере медицины эти знания позволяют предупреждать проявление ряда наследственных болезней человека. Современная генетика состоит из множества разделов, представляющих как теоретический, так и практический интерес. Классическими разделами являются: генетический анализ, основы хромосомной теории наследственности, цитогенетика, мутации и модификации. Кроме того, интенсивно развиваются молекулярная и эволюционная генетика, новая отрасль геномика, изучающая процессы становления и эволюции совокупности генов, а также генная инженерия.

Развитие генной инженерии началось в 1972 году, когда группа американских ученых во главе с П. Бергом смогла извлечь из клеток организма ген, кодирующий определенный продукт. В соединении со специальными молекулами ДНК (векторами) гены способны проникать в клетки микроорганизма и размножаться в них. Разработанная американцами технология уже много лет широко используется для промышленного производства высококачественных медицинских биопрепаратов: инсулина человека, интерферона, вакцин против гепатита В. Продукты генной инженерии применяются для диагностики СПИДа. Проводятся перспективные работы по лечению наследственных заболеваний посредством введения в организм пациента здорового гена для замещения гена-мутанта, являющегося причиной заболевания.

Метод хромосомной инженерии позволяет получить потомство, генетически сходное с особью, от которой взята соматическая клетка. Причем число таких потомков неограниченно. Метод получил название «клонирование» (от греч. klon — «ветвь, побег»), обозначая биологическое копирование живого объекта. Понятие «клонирование» подразумевает две формы воспроизведения. Во-первых, получение одинаковых копий фрагментов ДНК, во-вторых, получение группы клеток с единым генотипом. Первая методика применяется в биотехнологии. Ученые выращивали растения заданной формы — квадратные овощи или фрукты, которые удобно складывать в ящики, а также продукты, защищенные от действия вирусов.

Попытки клонирования животных впервые имели место в начале 1950-х годов. Американцы Р. Бриггс и Т. Кинг удалили ядро из яйцеклетки лягушки, пересадив в нее ядро зрелой особи, и получили нормального живого лягушонка. Похожие эксперименты проводились в России ученым Г. Лопашевым и в Англии — биологом Д. Гердоном. Последний сумел вывести целое лягушачье семейство. В 1997 году шотландцы удивили мир сообщением о рождении овцы, выведенной методом клонирования. Эксперименты проводились в Эдинбурге, в лаборатории микробиолога Яна Вильмута. Сначала «искусственная» овечка Долли ничем не отличалась от других животных, но по прошествии некоторого времени были замечены небольшие отклонения, в частности ускорение физического развития.


Дата добавления: 2015-12-01; просмотров: 33 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.006 сек.)