Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Наибольшее и наименьшее значение функций.

Читайте также:
  1. A. Значение слов (изучение лексики).
  2. I. Понятие и назначение КИС
  3. IV. ЗНАЧЕНИЕ ОБЕИХ СИСТЕМ. ЙОГИ С ТОЧКИ ЗРЕНИЯ ПСИХОЛОГИИ И ФИЗИОЛОГИИ
  4. VIII. ИСТОРИЧЕСКОЕ ЗНАЧЕНИЕ СИМВОЛА РЫБЫ
  5. Аппроксимация функций.
  6. Аргументируйте значение договора поставки в современных условиях.Охарактеризуйте его структуру и перечислите особенности.
  7. Бесконечно малые и бесконечно большие функций. Свойства.

Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x, заданная на отрезке [0; 1], достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x0 всегда найдётся точка этого интервала, лежащая правее (левее) x0, и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x0. Аналогичные утверждения справедливы для функций многих переменных.

32.Выпуклость, вогнутость и точки перегиба кривой.График функции y = f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. График функции y = f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале. На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c). Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым. Теорема. Пусть y = f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f ''(x) > 0 – вогнутый. Доказательство. Предположим для определенности, что f ''(x) < 0 и докажем, что график функции будет выпуклым. Возьмем на графике функции y = f(x) произвольную точку M0 с абсциссой x0 Î (a; b) и проведем через точку M0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной. Итак, уравнение кривой имеет вид y = f(x). Обозначим ординату касательной, соответствующую абсциссе x. Тогда . Следовательно, разность ординат кривой и касательной при одном и том же значении x будет . Разность f(x) – f(x0) преобразуем по теореме Лагранжа , где c между x и x0. Таким образом, . К выражению, стоящему в квадратных скобках снова применим теорему Лагранжа: , где c1 между c0 и x0. По условию теоремы f ''(x) < 0. Определим знак произведения второго и третьего сомножителей. 1. Предположим, что x > x 0. Тогда x0 < c1 < c < x, следовательно, (x – x 0) > 0 и (c – x 0) > 0. Поэтому . 2. Пусть x < x0, следовательно, x < c < c 1 < x 0 и (x – x 0) < 0, (c – x 0) < 0. Поэтому вновь . Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0  (a; b), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично. Точка графика непрерывной функции, отделяющая его выпуклую часть от вогнутой, называется точкой перегиба. Очевидно, что в точке перегиба касательная, если она существует, пересекает кривую, т.к. с одной стороны от этой точки кривая лежит под касательной, а с другой стороны – над нею. Определим достаточные условия того, что данная точка кривой является точкой перегиба. Теорема. Пусть кривая определяется уравнением y = f(x). Если f ''(x 0) = 0 или f ''(x 0) не существует и при переходе через значение x = x0 производная f ''(x) меняет знак, то точка графика функции с абсциссой x = x0 есть точка перегиба. Доказательство. Пусть f ''(x) < 0 при x < x0 и f ''(x) > 0 при x > x0. Тогда при x < x0 кривая выпукла, а при x > x0 – вогнута. Следовательно, точка A, лежащая на кривой, с абсциссой x0 есть точка перегиба. Аналогично можно рассматривать второй случай, когда f ''(x) > 0 при x < x0 и f ''(x) < 0 при x > x0. Таким образом, точки перегиба следует искать только среди таких точек, где вторая производная обращается в нуль или не существует.  

33. Функция. Свойства функций.Правило (закон) соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией Множество X всех допустимых действительных значений аргументаx, при которых функция y = f (x) определена, называется областью определения функции.

Множество Y всех действительных значений y, которые принимает функция,называется областью значений функции. Если для любых двух значений аргумента x1и x2 из условия x2 > x1 следует f (x2) > f (x1), то функция f (x) называется возрастающей;

если для любых x1 и x2 из условия x2 > x1 следует f (x2)< f (x1),то функция f (x) называется убывающей.

Функция, которая только возрастает или только убывает, называется монотонной. Функция называется ограниченной, если существует такое положительное число M, что |f (x)| M для всех значений x.

Если такого числа не существует, то функция - неограниченная. Функция y = f (x) называется непрерывной в точке x = a, если:

функция определена при x = a, т.e. f (a) существует, уществует конечный предел limxaf(x); f (a) = limxaf(x).

Если не выполняется хотя бы одно из этих условий, то функция называется разрывной в точке x = a.

Если функция непрерывна во всех точках своей области определения, то она называется непрерывной функцией.

Если для любого x из области определения функции имеет место: f (- x) = f (x), то функция называется чётной;

если же имеет место: f (-x) = - f (x), то функция называется нечётной. Значение аргумента, при котором функция равна 0, называется нулём (корнем) функции. Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой.

 


Дата добавления: 2015-11-30; просмотров: 36 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.008 сек.)