Читайте также: |
|
Название этого раздела — полупроводниковые наночастицы — несколько обманчиво. Наночастицы германия или кремния сами по себе не являются полупроводниками. Наночастицы веществ, являющихся в обычных условиях полупроводниками, резко отличаются по оптическим свойствам от объемных материалов. Оптические спектры поглощения существенно сдвигаются в голубую сторону (в сторону уменьшения длин волн) при уменьшении размеров частиц. Зачастую частицы могут иметь кристаллическую решетку, не характерную для массивного материала.
Связанная электрон-дырочная пара, называемая экситоном, в объемном полупроводнике может образоваться под действием фотона с энергией больше ширины запрещенной зоны для данного вещества. Связанные электрон и дырка находятся на расстоянии многих параметров решетки. Присутствие экситонов оказывает сильное влияние на электронные свойства полупроводников и их оптическое поглощение. Экситон можно рассматривать как водородоподобный атом, структура уровней энергии которого аналогична атому водорода, но с меньшим масштабом по энергиям. Вызванные светом переходы между этими водородоподобными уровнями приводят к сериям линий в спектре поглощения, которые можно нумеровать по главным квантовым числам уровней атома водорода. Особенно интересным оказывается то, что проис ходит при уменьшении масштабов наночастиц до размеров, меньших или сравнимых с радиусом электрон-дырочной пары. Возможны две ситуации, называемые режимами слабой и сильной локализации. В режиме слабой локализации радиус частицы больше радиуса экситона, но область перемещения экситона ограничена, что приводит к смещению спектра поглощения в голубую сторону. Когда радиус частицы меньше радиуса орбиты электрон-дырочной пары, движение электрона и дырки становятся независимыми и экситон перестает существовать. Электрон и дырка имеют собственные наборы энергетических уровней. Это также приводит к голубому смещению и к возникновению нового набора линий поглощения. На рис.3 показан спектр поглощения наночастиц CdSe двух разных размеров, измеренный при температуре 10 К. Видно, что наименьшая энергия поглощения, называемая границей поглощения, сдвигается в сторону больших энергий при уменьшении размеров наночастицы. Так как граница поглощения возникает из-за наличия щели, это означает, что щель увеличивается с уменьшением частицы. Отметим также увеличение интенсивности поглощения при уменьшении размеров наночастицы. Пики на больших энергиях связаны с экситонами, и они сдвигаются в голубую сторону при уменьшении размеров частицы. Эти эффекты объясняются вышеописанной локализацией экситонов. По существу, при уменьшении размеров частицы электрон и дырка приближаются друг к другу, что ведет к изменению расстояний между энергетическими уровнями. [1]
Такие наночастицы, представляющие собой трехмерные потенциальные ямы с размерами порядка радиуса экситона, в которых движение электронов, дырок и экситонов пространственно ограничено в трех измерениях, относят к квантовым точкам (КТ) [2].
В качестве материала для изготовления КТ применяют Ge и Si, а также практически любые полупроводниковые соединения (например, бинарные: сульфиды и селениды кадмия, свинца, цинка; тройные класса I-III-VI2, где обычно I = Cu, Ag, III = Αl, Ga, In, VI — атомы халькогенов). Последние обладают более широким спектром свойств и также могут быть получены в виде наночастиц в различных средах [12].
Создание в диэлектрической матрице полупроводниковой нанокристаллической фазы и регулирование ее свойств является одной из важных задач в технологии изготовления наноструктурированных материалов. Одним из таких свойств является оптическая нелинейность, то есть зависимость показателей преломления от интенсивности падающего света. Такие стекла имеют существенную восприимчивость третьего порядка, что приводит к следующему виду зависимости показателя преломления n от интенсивности падающего света I:
п = п0 + п2I (1)
Малоинерционная нелинейность КТ, порог которой неизмеримо ниже, чем в сплошной среде, определяет основное применение КТ в нанофотонике – устройства управления световыми потоками, в том числе управляемые самим светом. Рассмотрим нелинейный резонатор Фабри-Перо, в который помещена система из многих КТ. В качестве управляющего используем излучение, центральная частота которого соответствует резонансному поглощению в КТ. Основной (управляемый) сигнал имеет частоту, на которую настроен резонатор, таким образом, что он, скажем, полностью проходит через зеркала. При подаче даже сравнительно слабого управляющего светового сигнала за счет взаимодействия с КТ происходит достаточное изменение показателя преломления матрицы, и резонатор Фабри-Перо перестраивается на другую частоту, т.е. оптический ключ размыкается.
Матрица со многими КТ может использоваться в качестве эффективных невыцветающих люминофоров, что делает такие среды перспективными для квантовой криптографии и квантовых вычислении. Кроме того, они могут быть использованы как активные среды в лазерах или светодиодах. Такие лазеры с оптической или электрической накачкой имеют довольно высокий КПД и весьма большое число частот в спектре излучения КТ, недостижимых для обычных лазеров, что позволяет эффективно управлять частотой выходного сигнала. В отличие от естественных атомов, для которых энергетический спектр задан раз и навсегда самой природой, спектр КТ можно задавать, контролируя размер наночастицы. Более того, можно управлять спектром уже изготовленной КТ, используя оптический или электрический контроль показателя преломления матрицы, в которой помещен ансамбль КТ. Управление частотой выходного сигнала лазера на КТ может осуществляться с помощью воздействия дополнительного светового потока на полупроводниковую матрицу, содержащую КТ, а также путем подведения потенциала к матрице. При этом показатель преломления матрицы слегка изменяется, что приводит к существенному изменению спектра выходного излучения. [4]
Дата добавления: 2015-11-16; просмотров: 134 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Титульный лист | | | Металлические наночастицы |