Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Резонансный усилитель на биполярном транзисторе.

Підсилювач постійного струму | Принцип действия | Загальмовані мультивібратори | ПІДСИЛЮВАЧІВ. КОМПАРАТОРИ | LС – АВTОГЕНЕРАТОРИ | УМОВИ САМОЗБУДЖЕННЯ АВТОГЕНЕРАTОРІВ |


Читайте также:
  1. Life Enhancer Усилитель жизни.
  2. Дифференциальный усилитель.
  3. Реверсивный магнитный усилитель.
  4. Усилитель напряжения
  5. Усилительный каскад на биполярном транзисторе

В схемах на биполярных транзисторах используется частичное подключение к контуру усилительного прибора и нагрузки. Это позволяет уменьшить шунтирование контура сравнительно малыми входными и выходными сопротивлениями транзисторов. Кроме того, как уже отмечалось выше, неполное подключение контура позволяет повысить устойчивость работы усилителя.

Рассмотрим автотрансформаторную и трансформаторную схемы связи.

Схема с двойной автотрансформаторной связью контура.

 

 

Pисунок 9.2.

- делитель, обеспечивающий рабочую точку транзистора;

- резистор, обеспечивающий температурную стабилизацию рабочей точки за счет ООС по постоянному тока;

- исключает ОС по переменному току;

- развязывающий фильтр цепи питания;

- резонансная нагрузка усилителя;

- разделительный конденсатор, предотвращающий попадание питающего напряжения коллектора в цепь базы второго транзистора.

В данной схеме транзистор усилителя автотрансформаторно подключен к контуру с коэффициентом

.

Вход следующего каскада автотрансформаторно подключен к контуру с коэффициентом включения

.

Во второй схеме контур имеет трансформаторную связь с коллектором транзистора данного каскада и автотрансформаторную со входом следующего. Трансформаторная связь конструктивно более удобна (более гибка). Возможны и другие варианты схемы.

 

 

Pисунок 9.3.

Общим для всех схем является двойное частичное включение контура. Полное включение можно рассматривать как частный случай, когда коэффициенты включения равны 1. Поэтому для анализа можно использовать одну обобщенную эквивалентную схему замещения усилителя.

 

 

1.14

У колах частотозалежного зворотного зв'язку використовують декілька типових схем. До них відносяться послідовно-паралельна частотовибіркова RC -схема (міст Вінна) та подвійний Т-подібний міст.

Широке поширення одержали ВП на основі операційних підсилювачів (ОП). Коефіцієнт підсилення з негативним зворотним зв’язком (НЗЗ) визначається тільки параметрами ланцюга зворотного зв’язку (ЗЗ). Якщо в ланцюзі ЗЗ використовувати RC- схему, коефіцієнт передачі і фазовий зсув якого залежать від частоти, можна забезпечити необхідну залежність коефіцієнта передачі ВП від частоти.

Як частотозалежні кола застосовують різні RC -схеми.

Схему ВП з послідовно-паралельним частотовибірковим RC- колом - мостом Вінна показано на рис. 12.1 (схему моста виділено пунктиром).

З подачею на вхід такого підсилювача несинусоїдальної напруги U вх (t) на виході одержуємо синусоїдальний сигнал (рис. 12.2), частота якого визначається значенням квазірезонансної частоти f 0.


 

Рис. 12.1. Схема вибіркового підсилювача з мостом Вінна

 

Рис. 12.2. Вибіркове виділення електричного сигналу


 

Процес селекції сигналу необхідної частоти відбувається завдяки особливостям частотних характеристик моста Вінна (рис. 12.3).

а

 

б

Рис. 12.3. Вибірковий підсилювач на ОП:

а – принципова схема; б – АЧХ подвійного Т-подібного моста

 

На частотах, відмінних від f 0,коефіцієнт передачі моста Вінна малий і можна вважати, що сигналу на неінвертуальному вході немає. Сигнал позитивного зворотного зв`язку U ПЗЗ = 0. При цьому коефіцієнт передачі вхідного сигналу U ВХ визначається коефіцієнтом передачі напруги при вмиканні ОП за інвертувальним входом:

На частоті f 0 коефіцієнт передачі моста Вінна максимальний, а тому на вхід ОП подається сигнал позитивного зворотного зв’язку, що різко збільшує коефіцієнт підсилення схеми Кm порівняно зі значенням . Підсилюється (виділяється) m -на гармоніка. Частотну характеристику ВП зображено на рис. 12.4.

Рис. 12.4 Частотна характеристика вибіркового підсилювача

 

Чим вищий коефіцієнт підсилення , тим вужча посилювальна область частот (смуга пропускання), вище відношення . Однак, якщо , то виконується умова самозбудження і коефіцієнт підсилення схеми на частоті f 0 дорівнює нескінченності. Це означає, що на виході схеми будуть існувати синусоїдальні коливання частоти f 0 і у випадку нульового вхідного сигналу.

1.15

 

Усилители мощности

Что же представляет из себя Усилитель Мощности – далее, для краткости будем называть его УМ. Условно, его структурную схему можно разделить на три части:

Входной каскад

Промежуточный каскад

Выходной каскад

Все эти три части выполняют одну задачу – увеличить мощность выходного сигнала до такого уровня, чтобы можно было раскачать нагрузку с низким сопротивлением - динамическую головку или наушники. Как они это делают? Очень просто – берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала.

Это как раз продемонстрировано на рисунке. На входе у нас маленький (мяу!) сигнал, на выходе большой (МЯУ!). При этом его форма (мяу! -МЯУ!) совершенно не поменялась. Спасибо Кот.

Но, к сожалению, все хорошо бывает только в теории. На практике же, при конструировании радиоаппаратуры мы применяем неидеальные резисторы, конденсаторы, и в особенности транзисторы. Поэтому форма выходного сигнала может весьма серьезно отличаться от входного и такая беда называется искажения. Свои пять копеек в порчу сигнала вносят все каскады усилителя, но львиную его долю – я бы сказал, целый рубль мелочью, вносит оконечный каскад при его неправильном построении или расчете.

Почему искажения – это плохо? Ну, чтобы не заниматься демагогией, просто вырежьте из этой статьи, скажем, каждое пятое слово. Что получилось? Нет, смысл, конечно, все равно понятен, но уже несколько не то, правда? Таким же образом получается и со звуком.

Итак, давайте рассмотрим различные способы построения оконечных каскадов УМ, которые также называются классами (или режимами работы) усилителей. Слышали наверное – усилитель класса А, усилитель класса АВ – вот это оно и есть.

Начнем с того, что посмотрим на общую принципиальную схему выходного каскада УМ.

Это двухтактный выходной каскад на комплементарных транзисторах. Как видно, в базовые цепи транзисторов включены источники напряжения, формирующие начальное смещение рабочей точки каждого из транзисторов. Так вот как раз от величины этого напряжения и зависит в каком режиме (классе) будет работать тот или иной выходной каскад.

Ну, начнем по порядку – режим А.

Этот режим получится у нас при довольно большом напряжении смещения , таком, что

где I0 – ток покоя каскада. Таким образом, оба транзистора находятся в активной зоне и по мере спада коллекторного тока одного транзистора, увеличивается ток другого. В результате всех этих плясок мы получаем практически идеальную линейность каскада и полное отсутствие нелинейных искажений. НО. Всегда есть некое НО, вы заметили? Во-первых, мощность, потребляемая от источника питания, равна удвоенной мощности выходного сигнала и является величиной постоянной, не зависящей от входного сигнала. То есть, если усилитель развивает максимальную выходную мощность 100 ватт, то потребляемая от источника питания мощность составит 200 ватт, причем, не важно с какой громкостью вы будете слушать музыку. А если усилитель двухканальный, то есть стерео? А если это домашний кинотеатр? Дальше. Выходные транзисторы, как вы знаете имеют дурную привычку греться. То есть, рассеивают некоторую мощность. В случае режима А, рассеиваемая мощность для одного транзистора равна следующему:

где a – размах напряжения на выходе.

Что у нас получается? Еще одна особенность класса А – мощность рассеяния транзисторов тем больше, чем меньше входной сигнал. То есть, если вы оставите работающий усилитель без входного сигнала, он будет греться как печка, так как в отсутствие входного сигнала мощность рассеяния транзистора равна максимальной выходной мощности усилителя. Кстати, хочу сказать, что это проверено на практике – мой Technics A 900 Reference и в самом деле греется сильнее в том случае, если на его вход не подается никакого сигнала – я в свое время очень удивлялся этому обстоятельству и даже хотел тащить его в ремонт. Еще один немаловажный параметр усилителя – КПД. Ну, сами понимаете – с таким нагревом транзисторов никакого человеческого (Мяу!) или кошачьего КПД мы не получим.

КПД считается так:

гда a, как и в прошлой формуле – размах выходного напряжения. Таким образом, КПД не постоянен и увеличивается по мере нарастания входного сигнала, а значит и выходной мощности и максимально достигает значения 50%. (Хотите выпить бутылку пива? Мяу, ничего не получится – половину бутылки выливаем в унитаз, оставшуюся половину выпиваем и бежим снова за целой.) Да, примерно так и есть, но надо заметить, что пиво это будет просто превосходное. Правда, тем обиднее будет выкидывать половину.

Итак, подытожим – чем же хорош класс А? Прежде всего отличной линейностью и отсутствием искажений – форма сигнала на выходе остается такой же, какой она была на входе. Но за это нам приходится платить убийственной потребляемой мощностью и чрезвычайно низким КПД усилителя. Пойти на такие жертвы могут далеко не все и такой режим работы усилителей применяется только в очень качественных системах класса Hi - End, стоимость которых начинается от 1000 утоптанных енотов и выглядят они при этом форменными гробами.

 

Следующий класс усилителей – класс В

Так же как и в прошлый раз, рассмотрим двухтактный каскад на комплементарных транзисторах.

Схема немножко упростилась в связи со спецификой работы усилителя в этом режиме. Как можно увидеть – смещения тут нет совсем никакого, то есть транзисторы открываются исключительно от входного сигнала. Таким образом, особенность этого режима заключается в том, что при отсутствии входного сигнала оба транзистора закрыты, и каскад не потребляет от источника питания совершенно ничего – I0 =0. При наличии входного сигнала транзисторы работаю поочередно – для положительных полуволн работает транзистор Т1, а для отрицательных Т2. Давайте посмотрим, как у нас обстоит дело с потребляемой мощностью, КПД, и нагревом транзисторов.

Для начала введем некий коэффициент а – так называемый, коэффициент использования.

то бишь отношение выходного напряжения в данный момент к максимальному выходному напряжению. Если сказать человеческим языком, то эта цифирька показывает загруженность усилителя работой в данный момент – или он электроны ведрами таскает с бешенной скоростью – а=1, или вообще дрыхнет – а=0.

Итак, выходная мощность считается по следующей формуле:

;

мощность рассеяния рабочего транзистора:

потребляемая мощность:

Ну в общем, в случае режима В все по-честному – потребляемая мощность возрастает по мере роста входного сигнала и соответственно, выходной мощности. Максимальная потребляемая мощность при а=1 достигает

КПД также прирастает с ростом уровня сигнала и достигает 78,5%. Ну совсем другое дело. (Мяу! Ну да – вылить 20% пива – это не 50%.)

Так, что то мы пропустили, кажется. Ну точно – про искажения то забыли. А все Кот со своим пивом. Отвлекает.

Так вот, посмотрим на искажения.

Уууу… вот тут то мы и попали – смотрите, что творится. В чистом классе В нас поджидает очень большая ммм… (Мяу! Задница!) ну да, что то в этом роде - нелинейные или, как их еще называют – переходные искажения 1-го рода. Видите – на графике – вместо того, чтобы синусоиде плавно переходить через ноль, как она это делает во входном сигнале, у нас получается вообще провал некоторой ширины – то есть момент, когда сигнал исчезает вообще – нету его. Почему же это происходит? Все дело в том, что транзистору, чтобы открыться и начать работать нужно некоторое пороговое напряжение, подаваемое на базу – для кремниевых биполярных транзисторов оно равно 0,7 вольта.

То есть, что мы получаем. Допустим, величина положительной полуволны начинает убывать. Транзистор Т1 начинает закрываться. И наступает такой момент, когда величина первой полуволны падает ниже 0,7 вольта и Т1 закрывается, но ведь Т2 то еще не открылся, а откроется он только тогда, когда сигнал перейдет в отрицательную полуволну и её величина достигнет напряжения –0,7 вольт. Таким образом, мы получаем дырку в сигнале шириной в 1,4 вольта. Ай ай ай, что же нам делать то теперь, а?

Ну, чтобы не заканчивать эту часть на грустной ноте, забегу вперед и скажу, что решение этой проблемы найдено, найдено давно и называется оно режим АВ. Некий компромисс между качеством сигнала и мощностными параметрами. Но это мы уже рассмотрим в следующей части. (А еще мы будем рассматривать класс D – цифровой усилитель)

 

Каскады усилителей мощности отличаются большим разнообразием. Они могу выполняться на биполярных и полевых транзисторах, включенных по схеме ОВ, ОЭ (ОИ) или ОК (ОС).

По способу подключения нагрузки усилительные каскады могут быть трансформаторными и бестрансформаторными.

Важным является также класс усиления, используемый в каскаде. В зависимости от выбора исходной рабочей точки на передаточной характеристике различают режимы работы: А, В, АВ, С и D.

Режим А – это режим, при котором исходная рабочая точка П, определяющая состояние схемы при отсутствии сигнала и так называемый ток покоя Iкп, располагается примерно на середине линейного участка характеристики (рис.1).

 

 

Iк iк

 

Iкm

Iкп П

 

 

0 t

Uбэ

Uбп

Uвх m

 

t

 

Рис.1. Режим А работы усилительного каскада

 

В этом режиме напряжение смещения Uбп всегда больше амплитуды входного сигнала Uбп > Uвх m, а постоянная составляющая коллекторного тока больше или примерно равна амплитуде переменной составляющей Iкп ≥ Iкm. Синусоидальному входному сигналу соответствует синусоидальный выходной ток, нелинейные искажения минимальны, но КПД каскада составляет лишь 20 – 30%.

Режим В – это режим, при котором исходная рабочая точка совпадает с началом координат, т.е. ток покоя отсутствует Iкп = 0 (рис.2). При подаче на вход синусоидального сигнала ток в выходной цепи протекает лишь в течение половины периода и имеет форму импульсов с углом отсечки θ = π/2.

Iк iк

Iкm

 

 

0 Uбэ t

 

Uвх m

 

t

 

Рис.2. Режим В работы усилительного каскада

 

 

КПД каскада, работающего в режиме В, достигает 60 – 70%. Однако форма выходного сигнала искажена из-за нелинейного участка передаточной характеристики.

Режим АВ, как видно из рис.3 занимает промежуточное положение.

 

 

Iк iк

 

Iкm

 

П

Iкп

Uбэ t

 

Uвх m

 

 

T

 

Рис.3. Режим АВ работы усилительного каскада

 

Угол отсечки в этом режиме несколько больше за счет сдвинутой из нуля исходной, рабочей точки П с помощью тока покоя Iкп в начало линейного участка передаточной характеристики.

Режим С - это режим, при котором ток iк протекает в течение промежутка времени, меньшего половины периода входного сигнала, т.е. θ < π/2. Ток покоя отсутствует. Этот режим используется в мощных избирательных усилителях, где нагрузкой является колебательный контур.

Режим D – это ключевой режим работы, при котором транзистор может находиться только в двух состояниях: или полностью заперт (режим отсечки), или полностью открыт (режим насыщения). Достоинство режима D заключается в увеличении КПД. Его недостаток – значительное усложнение схемы усилителя.

 

Усилитель мощности с трансформаторным включением нагрузки

Схема усилителя мощности с трансформаторной нагрузкой показана на рис.4. В работе усилителя используется режим А. Расчет каскада обычно проводят графо-аналитическим методом с использованием линий нагрузки по постоянному и переменному токам. Исходным при расчете являются выходная мощность Pн и сопротивление Rн.

В выходной цепи каскада сопротивление постоянному току относительно мало. Оно определяется активным сопротивлением первичной обмотки трансформатора, в силу чего линия нагрузки каскада по постоянному току проводится из точки Е почти вертикально.

Для определения угла наклона линии нагрузки каскада по переменному току, проходящей через точку покоя П, необходимо определить коэффициент трансформации . Сопротивление нагрузки каскада по переменному току определяется приведенным к первичной обмотки сопротивлением Rн: .

Для выбора координат точки покоя Uкэп и Iкп требуется определить Iкm, Uкm. В случае гармонического сигнала выходная мощность каскада связана с параметрами Uкm и Iкm выражением:

,

откуда находим .

 

Тр.

 

ω1 ω2 Rн

R1

 

С1

Т

 

Uвх R2 Rэ

_

 

Iк

Iк доп

 

Pк доп

 

Iкm П

Iбп

t

 

Iкп

 

0 Е Uк доп Uкэ

Uкэп

 

 

Uкm

t Рис. 4

 

Выбор напряжения Uкm производят с учетом того, что режим А предусматривает: Uкэп > Uкm + ΔUкэ, Iкп > Iкm + Iк max, где ΔUкэ – напряжение на коллекторе, соответствующее области нелинейных начальных участков выходных характеристик транзистора; Iк max – начальный ток коллектора, соответствующий максимальной температуре. Из этого следует Uкэп ≤ Е. Для определения Iкп можно воспользоваться линией нагрузки по постоянному току или соотношением .

После нахождения точки покоя транзистора через нее проводится линия нагрузки по переменному току под углом, определяемым отношением .

Выбор типа транзистора связывают с производимым расчетом, т.к. тип транзистора накладывает ограничения на ток Iкm, напряжение Uкэm и мощность Pк, рассеиваемую в коллекторном переходе: Iк. доп. > Iкп + Iкm, Uк. доп. > Uкэп + Uкm ≈ 2Е,

Рк. доп. > Рк = Uкп ∙ Iкп, где Iк. доп., Uк. доп., Рк. доп. – допустимые параметры для транзистора.

По найденным значениям Iкп определяют ток Iбп, а затем рассчитывают элементы входного делителя R1 и R2.

КПД каскада равен произведению коэффициентов полезного действия коллекторной цепи и трансформатора: η = ηк ∙ ηтр.

Величину ηк находят из отношения выходной мощности каскада к мощности, потребляемой от источников питания:

.

Предельная величина ηк равна 0,5 при Iкm = Iкп и Uкm = Uкэп. Положив ηтр = 1, заключаем, что предельно возможное КПД рассматриваемого каскада составляет 50%. Реальное значение η не превышает 35 ÷ 45%.

Мощность рассеиваемая транзистором в коллекторном переходе Рк характеризуется разностью мощностей, потребляемой каскадом и отдаваемой в цепь трансформатора:

.

Эта величина стремится к 0,5Ри при максимальной нагрузке и к Ри при отсутствии сигнала.

 


Дата добавления: 2015-11-16; просмотров: 172 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Корекція АЧХ в області низьких частот| СКЛАДЕНИЙ ТРАНЗИСТОР

mybiblioteka.su - 2015-2025 год. (0.032 сек.)