Читайте также:
|
|
1. Overview: Let's start with the idea of a reaction. In chemistry, a reaction happens when two or more molecules interact and something happens. That's it. What molecules are they? How do they interact? What happens? Those are all the possibilities in reactions. The possibilities are infinite. There are a few key points you should know about chemical reactions.
Key Points
1. A chemical change must occur. You start with one compound and turn it into another. That's an example of a chemical change. A steel garbage can rusting is a chemical reaction. That rusting happens because the iron (Fe) in the metal combines with oxygen (O2) in the atmosphere. When a refrigerator or air conditioner cools the air, there is no reaction. That change in temperature is a physical change. Nevertheless, a chemical reaction can happen inside of the air conditioner.
2. A reaction could include ions, molecules, or pure atoms. We said molecules in the previous paragraph, but a reaction can happen with anything, just as long as a chemical change occurs (not a physical one). If you put pure hydrogen gas (H2) and pure oxygen gas in a room, they can be involved in a reaction. The slow rate of reaction will have the atoms bonding to form water very slowly. If you were to add a spark, those gases would create a reaction that would result in a huge explosion. Chemists would call that spark a catalyst.
3. Single reactions often happen as part of a larger series of reactions. Take something as simple as moving your arm. The contraction of that muscle requires sugars for energy. Those sugars need to be metabolized. You'll find that proteins need to move in a certain way to make the muscle contract. A whole series (hundreds actually) of different reactions are needed to make that simple movement happen.
2. RATES OF REACTIONS
The rate of a reaction is the speed at which a reaction happens. If a reaction has a low rate, that means the molecules combine at a slower speed than a reaction with a high rate. Some reactions take hundreds, maybe even thousands of years while other can happen in less than one second. The rate of reaction depends on the type of molecules that are combining.
There is another big idea for rates of reaction called collision theory. The collision theory says that the more collisions in a system, the more likely combinations of molecules will happen. If there are a higher number of collisions in a system, more combinations of molecules will occur. The reaction will go faster, and the rate of that reaction will be higher.
Reactions happen, no matter what. Chemicals are always combining or breaking down. The reactions happen over and over but not always at the same speed. A few things affect the overall speed of the reaction and the number of collisions that can occur.
Concentration: If there is more of a substance in a system, there is a greater chance that molecules will collide and speed up the rate of the reaction. If there is less of something, there will be fewer collisions and the reaction will probably happen at a slower speed.
Temperature: When you raise the temperature of a system, the molecules bounce around a lot more (because they have more energy). When they bounce around more, they are more likely to collide. That fact means they are also more likely to combine. When you lower the temperature, the molecules are slower and collide less. That temperature drop lowers the rate of the reaction.
Pressure: Pressure affects the rate of reaction, especially when you look at gases. When you increase the pressure, the molecules have less space in which they can move. That greater concentration of molecules increases the number of collisions. When you decrease the pressure, molecules don't hit each other as often. The lower pressure decreases the rate of reaction.
3. MEASURING REACTION
RATES. Scientists like to know the rates of reactions. They like to measure different kinds of rates too. Each rate that can be measured tells scientists something different about the reaction. We're going to take a little time to cover a few different measures of reaction rates.
Forward Rate: The rate of the forward reaction when reactants become products.
Reverse Rate: The rate of the reverse reaction when products recombine to become reactants.
Net Rate: The forward rate minus the reverse rate.
Average Rate: The speed of the entire reaction from start to finish.
Instantaneous Rate: The speed of the reaction at one moment in time.
Scientists measure all of these rates by finding out the concentrations of the molecules in the mixture. If you find out the concentration of molecules at two different times, you can find out what direction the reaction is moving and how fast it is going. Even if the concentrations are equal at the two points of measurement, scientists still learn something. If the concentrations are equal, the reaction is "at equilibrium. "
There's still more to know about measuring the rates of reactions. Since many reactions happen in several steps, the rate for each step needs to be measured. There will always be one step that happens at the slowest speed. That slowest step is called the rate-limiting step. That rate-limiting step is the one reaction that really determines how fast the overall reaction can happen.
Дата добавления: 2015-11-14; просмотров: 52 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Но я могу сказать что у каждого человека есть противовирусный иммунитет. | | | STOICHIOMETRY |