Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Устройство микроскопа с иммерсионной системой.

Читайте также:
  1. Административно-территориальное устройство
  2. АДСОРБЕРЫ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ АДСОРБЕНТА. НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ.
  3. Архитектура видеосистемы ПК. Управления видеосистемой. Режимы. Структура видеопамяти
  4. БАРАБАННЫЕ СУШИЛКИ. НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ.
  5. Внешнее благоустройство зданий и территорий
  6. Вопрос 2 назначение боевые свойства общее устройство и принцип работы АК-74. Порядок приведения к норм бою АК-74.
  7. Вопрос 2 назначение боевые свойства общее устройство и принцип работы АК-74. Порядок приведения к норм бою АК-74.

Пастер.

В 1864 году к Пастеру обращаются французские виноделы с просьбой помочь им в разработке средств и методов борьбы с болезнями вина. Результатом его исследований явилась монография, в которой Пастер показал, что болезни вина вызываются различными микроорганизмами, причем каждая болезнь имеет особого возбудителя. Для уничтожения вредных «организованных ферментов» он предложил прогревать вино при температуре 50—60 градусов. Этот метод, получивший название пастеризации, нашел широкое применение и в лабораториях, и в пищевой промышленности. После публикации в 1876 работы Роберта Коха «Этиология сибирской язвы» Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, родильной горячки, холеры, бешенства, куриной холеры и др. болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы (1881), бешенства (совместно с Эмилем Ру 1885). Первая прививка против бешенства была сделана 6 июля 1885 года 9-летнему Йозефу Майстеру по просьбе его матери. Лечение закончилось успешно, мальчик поправился.

 

Кох

р.кох внес большой вклад в развитие микробиологии, разработав способ получения чистых культур микроорганизмов, метод их окраски, микрофоосъемки, открыв возбудителей холеры (запятая коха) и туберкулеза (палочка коха).

 

Ивановский.

Впервые существование вируса (как нового типа возбудителя болезней) доказал в 1892 году русский учёный Д. И. Ивановский. После многолетних исследований заболеваний табачных растений, Д. И. Ивановский приходит к выводу, что мозаичная болезнь табака вызывается «бактериями, проходящими через фильтр Шамберлана, которые, однако, не способны расти на искусственных субстратах». На основании этих данных были определены критерии, по которым возбудителей заболеваний относили к этой новой группе: фильтруемость через «бактериальные» фильтры, неспособность расти на искусственных средах, воспроизведения картины заболевания фильтратом, освобождённым от бактерий и грибов. Возбудитель мозаичной болезни называется Д. И. Ивановским по-разному, термин «вирус» ещё не был введён, иносказательно их называли то «фильтрующимися бактериями», то просто «микроорганизмами».

 

устройство микроскопа с иммерсионной системой.

Иммерсия (от лат. immersio — погружение) — жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.
Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или её применения требует технологический процесс микроскопирования. При этом происходит:

1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;

2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

 

5. Электро́нный микроско́п (ЭМ) — прибор, позволяющий получать изображение объектов с максимальным увеличением до 106 раз. Штативная подставка выполняется в виде тяжелой отливки, обычно подковообразной формы. К ней на шарнире прикреплен тубусодержатель, несущий все остальные части микроскопа. С помощью тубуса, в который вмонтированы линзовые системы, можно перемещать их относительно образца для фокусировки. На нижнем конце тубуса расположен объектив. Как правило, микроскоп снабжен несколькими объективами разного увеличения на револьверной головке, которая позволяет устанавливать их в рабочее положение на оптической оси. При исследовании образца оператор обычно начинает с объектива, который имеет наименьшее увеличение и наиболее широкое поле зрения, находит интересующие его детали, после чего рассматривает их, пользуясь объективом с большим увеличением. Окуляр вмонтирован в конец выдвижного держателя, при помощи которого можно при необходимости изменять длину тубуса. Передвигая вверх и вниз весь тубус с объективом и окуляром, микроскоп наводится на резкость.

 

В качестве образца обычно берется очень тонкий прозрачный слой или срез, который кладут на стеклянную пластинку прямоугольной формы, называемую предметным стеклом, а сверху накрывают более тонкой стеклянной пластинкой меньших размеров, которая называется покровным стеклом. Чтобы увеличить контраст, образец часто окрашивают химическими веществами. Предметное стекло кладут на предметный столик таким образом, чтобы образец находился над центральным отверстием столика. Столик, как правило, бывает снабжен механизмом для плавного и точного перемещения образца в поле зрения.

Третья система линз – конденсор – концентрирует свет на образце. Держатель конденсоров, которых может быть несколько, находится под предметным столиком. Здесь же расположена ирисовая диафрагма для регулировки апертуры.
Еще ниже находится осветительное зеркало, устанавливаемое в универсальном шарнире. За счет того, что зеркало отбрасывает свет лампы на образец оптическая система микроскопа и создает видимое изображение. Чтобы изображение формировалось на фотопленке, окуляр заменяется фотоприставкой.

 

6. Фазово-Контрастный микроскоп - Mикроскоп, предназначенный для анализа прозрачных (бесцветных) объектов. Фазово-контрастная микроскопия особенно популярна в биологии, поскольку не требует предварительного окрашивания клетки, из-за которого та может погибнуть.

(Устройство Фазово-контрастное устройство может быть установлено на любом световом микроскопе и состоит из:
1) набора объективов со специальными фазовым пластинками;
2) конденсора с поворачивающимся диском. В нем установлены кольцевые диафрагмы, соответствующие фазовым пластинкам в каждом из объективов;
3) вспомогательного микроскопа.).

 

7. Люминесцентные микроскопы имеют немало достоинств. Среди основных преимуществ можно выделить:
• Исследования прозрачных, непрозрачных и темных объектов.
• Возможность получения контрастных изображений поверхностей исследуемых объектов на фоне темного цвета.

Действуют такие оптические приборы на основе следующего принципа: изображение получается с помощью светового потока, исходящего от объекта исследования. Свечение, прошедшее через возбуждающий светофильтр микроскопа, вызывает свечение самого объекта. Поток света потом проходит сквозь запирающий светофильтр, где возбуждающее излучение отсекается, а остается – люминесцентный поток свечения объекта.

Устройство люминесцентных микроскопов «Альтами» подобно конструкции металлографических (работающих по методу светлого поля в отраженном свете*), но есть несколько функциональных различий:

· источником света здесь выступает ртутная лампа вместо галогенной;

· имеются блоки с уже упоминаемыми светофильтрами и дихроичным зеркалом.

Дихроичное (полупрозрачное) зеркало в осветительной системе микроскопа в данном случае нужно для того, чтобы отражать световой поток от источника света, направляя его в объектив, который освещает объект, и пропускать свет, затем отраженный от объекта и вновь прошедший через объектив.

 

8. Темнопо́льная микроскопи́я — вид оптической микроскопии, в которой контраст изображения увеличивают за счет регистрации только света, рассеянного изучаемым образцом. При использовании метода темного поля регистрируются даже незначительные различия в преломляющей способности участков препарата[1]. Основы метода разработаны Р. Зигмонди в 1906 году.

применяется для получения изображений прозрачных живых объектов. Образец в нем рассматривается при столь «косом» освещении, что прямой свет не имеет возможности попасть в объектив. Изображение формируется светом, дифрагированным на объекте, и в результате объект выглядит очень светлым на темном фоне (с очень большим контрастом).

 

9. Основной таксономической единицей систематики бактерий является вид.
Вид – это эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, физиологическими, биохимическими и другими признаками.
Вид не является конечной единицей систематики. Внутри вида выделяют варианты микроорганизмов, отличающиеся отдельными признаками:
1) серовары (по антигенной структуре);
2) хемовары (по чувствительности к химическим веществам);
3) фаговары (по чувствительности к фагам);
4) ферментовары;
5) бактериоциновары;
6) бактериоциногеновары.


Бактериоцины – вещества, продуцируемые бактериями и губительно действующие на другие бактерии. По типу продуцируемого бактериоцина различают бактериоциновары, а по чувствительности – бактерициногеновары.


Свойства бактерий:
1) морфологические;
2) тинкториальные;
3) культуральные;
4) биохимические;
5) антигенные.


Виды объединяют в роды, роды – в семейства, семейства – в порядки. Более высокими таксономическими категориями являются классы, отделы, подцарства и царства.
Патогенные микроорганизмы относятся к царству прокариот, патогенные простейшие и грибы – к царству эукариот, вирусы объединяются в отдельное царство – Vira.
Все прокариоты, имеющие единый тип организации клеток, объединены в один отдел – Bacteria, в котором выделяют:
1) собственно бактерии;
2) актиномицеты;
3) спирохеты;
4) риккетсии;
5) хламидии;
6) микоплазмы.


Для систематики микроорганизмов используются:
1) нумерическая таксономия. Признает равноценность всех признаков. Видовая принадлежность устанавливается по числу совпадающих признаков;
2) серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками;
3) хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов;
4) генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.
Чистая культура – это бактерии одного вида, выращенные на питательной среде.

 

10. В современном представлении вид в микробиологии - совокупность микроорганизмов, имеющих общее эволюционное происхождение, близкий генотип (высокую степень генетической гомологии, как правило более 60%) и максимально близкие фенотипические характеристики.

Биовар (биотип) - внутривидовая систематическая категория, вариант, отличающийся от др. вариантов этого вида какими-либо существенными биол. св-вами.

Хемовар - внутриподвидовая категория для обозначения штамма или группы штаммов бактерий, выделяемых на основе биохим. или физиол. свойств.

Серовар (Серотип) — группа микроорганизмов одного вида, объединяемые общейантигенной структурой, определяемой серологическими методами диагностики

 

11. Популяции микроорганизмов - совокупность особей одного вида, относительно длительно обитающих на определенной территории (в биотопе).

Штамм — чистая культура вирусов,бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте.

Клон - совокупность особей, происходящих от одной родительской клетки.

 

12. В настоящее время установлены принципиальные различия в организации и функционировании клеток прокариот и эукариот. Прежде всего, они заключаются в отсутствии у прокариот мембран, с помощью которых органеллы микробной клетки (ядро, митохондрии, рибосомы и др.) отграничены от цитоплазмы. Система мембран у прокариот представлена только цитоплазматической мембраной, отдедяющей цитоплазму от клеточной оболочки или непосредственно от внешней среды. Вследствии этого при электронно-микроскопическом исследовании срезов клеток прокариот цитоплазма имеет вид мелкозернистой массы с включениями рибонуклеопротеиновых молекул, не организованных в ЭПС, но выполняющих рибосомальные функции.

Ядро у прокариот, которое часто называют нуклеоидом, имеет фибриальную структуру и не отграничено от цитоплазмы ядерной мембраной. В клетках прокариот отсутствуют митохондрии, хлоропласты, пластинчатый комплекс Гольджи. Окислительно-восстановительные ферменты локализованы в производных образованиях цитоплазматической мембраны — мезосомах.

У прокариот отсутствует митоз. Они размножаются путем бинарного деления и существуют в гаплоидном состоянии, вследствии чего диплоидность эукариот, имеющая огромное значение в их эволюции, не играет никакой роли в эволюции прокариот. У прокариот отсутствует также клеточный центр. Для них нетипичны внутриклеточные перемещения цитоплазмы и амебовидное движение.

Бактериальная клетка окружена внешней оболочкой, которая состоит из капсулы и клеточной стенки. От их состава зависит способность клетки воспринимать анилиновые красители (тинкториальные свойства). Капсулы в зависимости от степени выраженности подразделяют на микро- и макрокапсулы. Первые обнаруживаются только при электронно-микроскопическом исследовании в виде микрофибрилл из мукополисахаридов, которые тесно прилегают к клеточной стенке. Макрокапсулы представляют собой выраженный слизистый слой, снаружи покрывающий клеточную стенку. Он состоит из полисахаридов и редко из полипептидов.Как правило, макрокапсулу образуют немногие виды патогенных бактерий (пневмококки и др.) при неблагоприятных условиях среды, напр. в организме животных и человека. Однако у некоторых видов (клебсиеллы пневмонии) макрокапсула обнаруживается постоянно.

 

13. Капсула - слизистый слой клеточной стенки бактерий, состоящий из полисахаридов (пневмококк) или полипептидов (бацилла сибирской язвы). Микрокапсулу (толщиной менее 0,2 мкм) способны формировать большинство бактерий, четко выраженную макрокапсулу (толщиной более 0,2 мкм) формируют пневмококк, клебсиеллы, возбудитель сибирской язвы и некоторые другие. У патогенных бактерий капсула образуется в макроорганизме, на искусственных питательных средах она обычно утрачивается (за исключением клебсиелл).
В организме человека и животных капсула защищает патогенные бактерии от бактериофага, фагоцитоза и гуморальных факторов иммунитета, определяет антигенную специфичность микроорганизмов.
Капсулы, имея консистенцию геля, плохо удерживают краситель, и для их выявления чаще всего применяют методы негативного контрастирования.

 


Дата добавления: 2015-11-14; просмотров: 134 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ВАПЛІТЕ– Вільна Академія Пролетарської літератури.| Спорообразование у бактерий. Стадии, функциональное значение.

mybiblioteka.su - 2015-2024 год. (0.009 сек.)