Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ткань космоса: Пространство, время и структура реальности 20 страница

Ткань космоса: Пространство, время и структура реальности 9 страница | Ткань космоса: Пространство, время и структура реальности 10 страница | Ткань космоса: Пространство, время и структура реальности 11 страница | Ткань космоса: Пространство, время и структура реальности 12 страница | Ткань космоса: Пространство, время и структура реальности 13 страница | Ткань космоса: Пространство, время и структура реальности 14 страница | Ткань космоса: Пространство, время и структура реальности 15 страница | Ткань космоса: Пространство, время и структура реальности 16 страница | Ткань космоса: Пространство, время и структура реальности 17 страница | Ткань космоса: Пространство, время и структура реальности 18 страница |


Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

 

Симметрия и законы физики

 

Симметрия имеется в изобилии. Возьмите в вашу руку биллиардный шар и закрутите его тем или иным образом – приведите его во вращение вокруг любой оси, – и он будет выглядеть в точности тем же. Поместите плоскую круглую обеденную тарелку на подставку и закрутите ее относительно ее центра: она выглядит полностью неизменившейся. Осторожно поймайте недавно сформированную снежинку и поверните ее так, что каждый кончик переместится в положение, которое ранее занимал его сосед, и вы с трудом отметите, что вы вообще что-либо сделали. Возьмите букву "А", поверните ее относительно вертикальной оси, проходящей через ее вершину, и вы получите совершенный образ оригинала.

 

Как проясняют эти примеры, симметрии объекта являются манипуляциями над ним, настоящими или воображаемыми, при которых его внешний вид может не подвергаться изменениям. Чем больше видов передвижений может перенести объект без заметного эффекта для своего облика, тем более симметричным он является. Идеальная сфера имеет высшую симметрию, поскольку любое вращение вокруг ее центра, – используя вертикальную ось, горизонтальную ось или, фактически, любую ось, – оставляет ее выглядящей в точности так же, как и раньше. Куб менее симметричен, поскольку только вращения на углы по 90 градусов относительно осей, которые проходят через центр его граней (или комбинации таких вращений), оставляют его выглядящим неизменным. Конечно, если кто-то осуществит любое другое вращение, такое как на Рис. 8.1с, вы, очевидно, все еще сможете распознать куб, но вы также сможете ясно увидеть, что кто-то вмешивался в положение куба. В отличие от этого, симметрии похожи на самого ловкого вора; они являются манипуляциями, которые не оставляют каких-бы то ни было улик.

 

 

-----------------

 

 

-----------------

 

 

-----------------

 

 

- -

 

(а) (b) (с)

 

Рис 8.1 Если куб, как в (а), поворачивается на 90 градусов один или несколько раз относительно осей, проходящих через через любую из своих граней, он выглядит не изменившимся, как в (b). Но любые другие вращения могут быть отслежены, как в (с).

 

 

Все это были примеры симметрий объектов в пространстве. Симметрии, лежащие в основе известных законов физики, тесно связаны с этими симметриями, но сконцентрируемся на более абстрактном вопросе: какие манипуляции – еще раз, реальные или воображаемые, – могут быть проделаны над вами или над окружающей средой, что они совершенно не будут влиять на законы, которые объясняют наблюдаемые вами физические явления? Отметим, что есть такие симметрии, в соответствии с которыми манипуляции не требуют оставлять ваши наблюдения неизменными. Вместо этого мы интересуемся, изменяются ли законы, управляющие такими наблюдениями, – законы, которые объясняют, что вы видели ранее и что вы видите после некоторых манипуляций. Поскольку это центральная идея, рассмотрим ее в действии на некоторых примерах.

 

Представьте себе, что вы олимпийский гимнаст и в течение последних четырех лет вы старательно тренировались в вашем гимнастическом центре в Коннектикуте. Через кажущиеся бесконечными повторения вы довели каждое движение в ваших различных упражнениях до совершенства – вы знаете точно, как сильно надо оттолкнуться от равновесной перекладины для выполнения воздушного соскока, как высоко надо подпрыгнуть в упражнении на ковре для выхода с с двойным оборотом, как быстро надо крутнуться на брусьях, чтобы запустить ваше тело в совершенный соскок с двойным кульбитом. На самом деле, вашему телу с рождения присуще следование законам Ньютона, поскольку это именно те законы, которые управляют движением вашего тела. Теперь, когда вы, наконец, представили ваши упражнения перед переполнившей залы публикой в Нью Йорке, месте проведения самих олимпийских соревнований, вы рассчитываете на выполнение тех же самых законов, поскольку вы планируете выполнить ваши упражнения в точности так, как вы практиковались. Все, что мы знаем о законах Ньютона, придает веры вашей стратегии. Законы Ньютона не являются особыми в том или ином месте. Они не работают одним образом в Коннектикуте, а другим образом в Нью Йорке. Скорее, мы верим, что эти законы работают в точности тем же образом вне зависимости от того, где вы находитесь. Даже если вы измените местоположение, законы, которые управляют движением вашего тела, останутся так же не изменившимися, как это было с внешним видом биллиардного шара, который привели во вращение.

 

Эта симметрия известна как трансляционная симметрия или трансляционная инвариантность. Она применима не только к законам Ньютона, но так же и к законам электромагнетизма Максвелла, к СТО и ОТО Эйнштейна, к квантовой механике и, на самом деле, к любому предложению в современной физике, которое кто-либо принимает всерьез.

 

Тем не менее, отметим одну важную вещь. Детали ваших наблюдений и ощущений могут и иногда будут изменяться от места к месту. Если вы выполните выши гимнастические упражнения на Луне, вы обнаружите, что путь вашего тела в ответ на одинаковую силу прыжка вверх от ваших ног будет сильно отличаться. Но мы полностью понимаем это частное отличие, и оно уже встроено в сами законы. Луна менее массивна, чем Земля, так что она оказывает меньшее гравитационное притяжение; в итоге ваше тело путешествует по отличающейся траектории. И этот факт – что гравитационное притяжение тела зависит от его массы – является составной частью ньютоновского закона гравитации (точно так же, как и более утонченной ОТО Эйнштейна). Разница между вашими земными и лунными ощущениями не означает, что закон гравитации изменился от места к месту. Вместо этого, она (разница) просто отражает различие в окружающей среде, с которым закон гравитации уже согласован. Так что, когда мы говорим, что известные законы физики одинаково хорошо применимы в Коннектикуте или в Нью Йорке, – или, надо добавить, на Луне, – это будет верно, но надо держать в уме, что вам может понадобиться учесть особые отличия в окружающей среде, от которых зависят законы. Тем не менее, и это ключевое заключение, объяснительная система взглядов, которую обеспечивают законы, совсем не изменяется при изменении местоположения. Изменение в местоположении не требует от физика вернуться к грифельной доске и вывести новые законы.

 

Законы физики не действуют таким образом. Мы можем представить вселенную, в которой физические законы менялись бы так же, как местные и национальные правительства; мы можем представить вселенную, в которой законы физики, с которыми мы обычно имеем дело, ничего не говорили бы нам о законах физики на Луне, в галактике Андромеды, в Крабовидной туманности или на другой стороне вселенной. Фактически, мы не знаем с абсолютной определенностью, что законы, которые работают здесь, являются теми же самыми, которые работают в дальних уголках космоса. Но мы знаем, что если законы каким-то образом изменяются вне наших мест, это должно быть совсем вне наших мест, так как все более точные астрономические наблюдения обеспечивают все более убедительные свидетельства в пользу того, что законы однородны в пространстве, как минимум, в пространстве, которое мы можем видеть. Это подчеркивает поразительную силу симметрии. Мы связаны с планетой Земля и ее окрестностями. И все же, благодаря трансляционной симметрии мы можем получить знания о фундаментальных законах, работающих во всей вселенной, не покидая дома, поскольку законы, которые мы открываем здесь, являются и там законами.

 

Вращательная симметрия или вращательная инвариантность является близкой родственницей трансляционной инвариантности. Она основывается на идее, что каждое пространственное направление рассматривается на одинаковом основании с любым другим. Вид с Земли определенно не приводит вас к такому заключению. Когда вы смотрите вверх, вы видите вещи, весьма отличающиеся от того, что вы видите, когда вы смотрите вниз. Но, еще раз, это отражает детали окружения; это не характеризует сами лежащие в основании законы. Если вы покинули Землю и плаваете в пустом пространстве, далеко от любых звезд, галактик или иных небесных тел, симметрия становится очевидной: там нет ничего, что выделило бы одно особое направление в черной пустоте от другого. Они все равноправны. Вы не смогли бы дать идею, как удаленной в пространстве лаборатории, в которой вы сидите, исследовать свойства материи или сил, которые должны быть ориентированы таким или сяким образом, поскольку основополагающие законы нечувствительны к такому выбору. Если однажды ночью некий шутник изменит установки лабораторных гироскопов, вынудив их повернуться на некоторое число градусов относительно некоторой особой оси, вы должны ожидать, что это не будет иметь каких-либо следствий для законов физики, изучаемых вашими экспериментами. Каждое измерение всегда будет полностью подтверждать это ожидание. Так что мы уверены, что законы, которые управляют проводимыми вами экспериментами и объясняют найденные вами результаты, нечувствительны как к тому, где вы находитесь, – это трансляционная симметрия, – так и к тому, как вы сориентировались в пространстве – это вращательная симметрия.[1]

 

Как мы обсуждали в Главе 3, Галилей и другие были хорошо осведомлены о другой симметрии, которую законы физики должны соблюдать. Если ваша удаленная в пространстве лаборатория движется с постоянной скоростью, – безотносительно, двигаетесь ли вы со скоростью 5 миль в час туда или 100 000 миль в час сюда, – движение абсолютно не должно влиять на законы, которые объясняют ваши наблюдения, поскольку вы так же правы, как и соседний парень в утверждении, что вы покоитесь, а движется что-то другое. Эйнштейн, как мы видели, расширил эту симметрию совершенно неожиданным образом, включив скорость света среди наблюдателей, которая не будет зависеть от вашего движения или от движения источника света. Это был ошеломляющий ход, поскольку мы обычно сбрасываем особенности скорости объекта в мусорное ведро деталей окружающей среды, полагая, что наблюдаемая в общем случае скорость зависит от движения наблюдателя. Но Эйнштейн, видя поток симметрии света через щели в фасаде ньютоновской природы, вознес скорость света на уровень несокрушимого закона природы, объявив ее независимой от движения, как вид биллиардного шара не зависит от поворотов.

 

ОТО, следующее великое открытие Эйнштейна, была сразу поставлена на этот путь к теориям с еще большей симметрией. Точно так, как вы можете думать об СТО как о теории, устанавливающей симметрию среди всех наблюдателей, двигающихся друг относительно друга с постоянной скоростью, вы можете думать об ОТО как о теории, идущей на шаг дальше и устанавливающей симметрию также и среди всех ускоренных систем отсчета. Это экстраординарно, поскольку, как мы подчеркивали, хотя вы не можете чувствовать движение с постоянной скоростью, вы можете чувствовать ускоренное движение. И кажется, что законы физики, описывающие ваши наблюдения, должны быть непременно другими, когда вы ускоряетесь, чтобы оценить добавочные силы, которые вы чувствуете. Это так в случае ньютоновского подхода; его законы, первое, что появляется во всех учебниках по физике для первого года обучения, должны быть модифицированы, если используется ускоренный наблюдатель. Но через принцип эквивалентности, обсужденный в Главе 3, Эйнштейн обнаружил, что силы, которые вы чувствуете при ускоренном движении, неотличимы от сил, которые вы чувствуете в гравитационном поле подходящей интенсивности (чем больше ускорение, тем больше гравитационное поле). Так что, в соответствии с эйнштейновской, более утонченной точкой зрения, законы физики не изменяются, когда вы ускоряетесь, до тех пор, пока вы включаете подходящее гравитационное поле в ваше описание окружения. ОТО рассматривает всех наблюдателей, даже тех, которые двигаются с произвольной непостоянной скоростью, одинаково, – они полностью симметричны, – поскольку каждый может утверждать, что он покоится при условии добавления особых сил, ощущаемых как влияние особых гравитационных полей. Отличия в наблюдениях между одним ускоренным наблюдателем и другим, следовательно, не являются больше удивительными и обеспечивают подтверждение изменения законов природы не больше, чем это делают отличия, которые вы найдете, когда выполните ваши гимнастические упражнения на Земле или на Луне.[2]

 

Эти примеры несколько проясняют, почему многие рассматривают, и я подозреваю, Фейнман был бы согласен, что обширные симметрии, лежащие в основании законов природы, представляют вслед за атомной гипотезой второе место в списке обобщений наших наиболее глубоких научных достижений. Но это еще не все. В течение последних нескольких десятилетий физики вознесли принципы симметрии на высочайшую ступень лестницы объяснений. Когда вы сталкиваетесь с предлагаемым законом природы, естественный вопрос, который должен быть задан, таков: Почему это закон? Почему СТО? Почему ОТО? Почему максвелловская теория электромагнетизма?

 

Почему теория Янга-Миллса сильных и слабых ядерных сил (которую мы коротко рассмотрим)? Один важный ответ таков, что эти теории делают предсказания, которые раз за разом подтверждаются точными экспериментами. Это, определенно, существенно для доверия, которое физики испытывают к теориям, но это оставляет за кадром нечто важное.

 

Физики также верят, что эти теории находятся на правильном пути, потому что в некотором трудно объяснимом смысле они ощущаются правильными, и идеи симметрии существенны в этом ощущении. Ощущается непосредственно, что во вселенной нет места, которое как-то специально выделено по сравнению с любым другим, так что физики доверяют утверждению, что трансляционаая симметрия должна быть среди симметрий законов природы. Ощущается непосредственно, что нет особого движения с постоянной скоростью, которое было бы как-то выделено по сравнению с любым другим, так что физики доверяют утверждению, что СТО, полностью охватывая симметрию между всеми наблюдателями, движущимися с постоянной скоростью, является существенной частью законов природы. Ощущается непосредственно, более того, что любая точка отсчета наблюдателя – безотносительно к возможному включению ускоренного движения – должна быть так же применима, как и любая другая, так что физики верят, что ОТО, простейшая теория, включающая эту симметрию, находится среди глубоких, истинных, управляющих природой законов. И, как мы скоро увидим, теории трех сил, кроме гравитации, – электромагнетизма, сильного и слабого ядерных взаимодействий, – основываются на других, в некоторой степени более абстрактных, но равно убедительных принципах симметрии. Так что симметрии природы являются не просто следствиями законов природы. С нашей современной точки зрения симметрии являются основаниями, с которых начинаются законы.

 

 

Симметрия и время

 

Кроме своей роли по формированию законов, управляющих силами природы, идеи симметрии существенны и для концепции самого времени. Никто пока не нашел ясное, фундаментальное определение времени, но, несомненно, часть роли времени в структуре космоса заключается в том, что оно является учетчиком изменения. Мы распознаем, что время пролетело, отмечая, что вещи теперь отличаются от того, какими они были ранее. Часовая стрелка на ваших часах указывает на другое число, солнце находится в другом положении на небе, страницы в вашем расплетенном экземпляре Войны и мира стали более разупорядоченными, углекислый газ, который вырвался из вашей бутылки колы, еще более разлетелся, – все это делает очевидным, что вещи изменились, и время есть то, что обеспечивает возможность, чтобы такие изменения осуществились. Перефразируя Джона Уилера, время есть способ природы сохранять все – то есть, все изменения – от внезапных происшествий.

 

Существование времени, таким образом, зависит от отсутствия особой симметрии: вещи во вселенной должны изменяться от момента к моменту для нас, даже чтобы определить понятие "от момента к моменту", что полностью соотносится с нашей интуитивной концепцией. Если имеется полная симметрия между тем, каковы вещи сейчас, и тем, каковы они тогда, если изменение от момента к моменту не более значительно, чем изменения в поворачивающемся биллардном шаре, время, как мы себе его обычно представляем, не будет существовать.[3] Это не значит, что описание пространства-времени, схематически проиллюстрированное на Рис. 5.1, не будет существовать; будет. Но, поскольку все будет полностью однородно вдоль оси времени, не будет смысла, в котором вселенная эволюционирует или изменяется. Время будет абстрактным свойством такой арены реальности, – четвертым измерением в пространственно-временном континууме, – но, с другой стороны, оно будет нераспознаваемым.

 

Тем не менее, даже если существование времени соотносится с отсутствием одной особой симметрии, его применение на космических масштабах требует от вселенной быть предельно связанной с другой симметрией. Идея проста и отвечает на вопрос, который мог появиться у вас при прочтении Главы 3. Если теория относительности учит нас, что прохождение времени зависит от того, как быстро вы двигаетесь и от гравитационного поля, в котором вы оказались погруженным, то что должно означать, когда астрономы и физики говорят о целой вселенной, имеющей особый определенный возраст – возраст, который в наши дни оценивается около 14 миллиардов лет? Четырнадцать миллиардов лет в соответствии с чем? Четырнадцать миллиардов лет по каким часам? Придут ли живущие в удаленной туманности Головастика тоже к заключению, что вселенной 14 миллиардов лет, и, если так, что будет гарантировать, что их часы тикали синхронно с нашими? Ответ зависит от симметрии – симметрии в пространстве.

 

Если бы ваши глаза могли видеть свет, чья длина волны значительно длиннее, чем у оранжевого или красного света, вы были бы не только в состоянии видеть внутренности вашей микроволновой печки в момент ее включения, когда вы нажимаете кнопку старта, но вы также видели бы слабое и почти однородное зарево, распространенное через то, что другие из нас воспринимают как темное ночное небо. Более сорока лет назад ученые открыли, что вселенная наполнена микроволновым излучением, – светом с большой длиной волны, – которое является холодным остатком жарких условий сразу после Большого взрыва.[4] Эта космическая микроволновая фоновая радиация совершенно безопасна. Раньше она была в огромной степени более горячая, но в ходе эволюции и расширения вселенной радиация равномерно снижала концентрацию и охлаждалась. Сегодня ее температура всего около 2,7 градуса выше абсолютного нуля, и ее самое большое проявление в качестве источника неприятностей заключается в ее вкладе в небольшую часть "снега", который вы видите на вашем телевизоре, когда вы отключили кабель и настроились на станцию, которая не вещает в эфир.

 

Но эти слабые радиопомехи дают астрономам то же, что кости тираннозавров дают палеонтологам: окно в ранние эпохи, которое является ключевым для реконструкции того, что происходило в удаленном прошлом. Существенное свойство радиации, обнаруженное точными спутниковыми измерениями на протяжении последнего десятилетия, это то, что она предельно однородна. Температура излучения в одной части неба отличается от температуры в другой части неба менее, чем на тысячную долю градуса. На земле такая симметрия сделала бы телевизионные каналы погоды неинтересными. Если в Джакарте 85 градусов (Фаренгейта), то вы бы немедленно знали, что температура между 84,999 градусов и 85,001 градусов держится в Аделаиде, Шанхае, Кливленде, Анкоридже и, коли на то пошло, где угодно еще. В отличие от этого, на космических масштабах неоднородность температуры излучения фантастически интересна, так как она обеспечивает два критически важных наблюдения.

 

Первое, она обеспечивает наблюдаемое доказательство того, что на своих ранних этапах вселенная не была заселена большими, слипшимися, высокоэнтропийными скоплениями материи, такими как черные дыры, поскольку такое неоднородное окружение должно было бы оставить неоднородный отпечаток на излучении. Вместо этого однородность температуры радиации подтверждает, что молодая вселенная была однородной; и, как мы видели в Главе 6, когда важна гравитация, – как это было в плотной ранней вселенной, – однородность означает низкую энтропию. Это хорошая вещь, поскольку наше обсуждение стрелы времени сильно зависело от вселенной, стартовавшей с низкой энтропией. Одной из наших целей в этой части книги является зайти в объяснении этого наблюдения так далеко, насколько мы сможем, – мы хотим понять, как могло возникнуть однородное, низкоэнтропийное, весьма невероятное окружение ранней вселенной. Это позволит нам сделать большой шаг к пониманию причин стрелы времени.

 

Второе, хотя вселенная эволюционировала после Большого взрыва, в среднем эволюция должна была быть почти одинаковой в разных местах космоса. Ввиду того, что температуры здесь, и в галактике Вихря, и в кометном скоплении, и где угодно еще согласуются с точностью до четвертого знака после запятой, физические условия в каждом регионе пространства должны эволюционировать после Большого взрыва существенно одинаковым образом. Это важный вывод, но вы должны правильно его интерпретировать. Быстрый взгляд на ночное небо определенно показывает разнообразный космос: планеты и звезды различных сортов разбросаны там и тут по пространству. Суть, однако, в том, что когда мы анализируем эволюцию целой вселенной, мы рассматриваем макроскопическую перспективу, которая усредняется по этим "мелкомасштабным" отклонениям, и крупномасштабные средние оказываются всегда полностью однородными. Подумайте о стакане воды. На масштабе молекул вода в высшей степени неоднородна: здесь имеется молекула Н2О, затем, после простора пустого пространства, другая молекула Н2О, и так далее. Но если мы усредним по мелкомасштабной молекулярной комковатости и исследуем воду на "больших", повседневных масштабах, мы можем увидеть невооруженным глазом, что вода в стакане выглядит совершенно однородной. Неоднородность, которую мы видим, когда пристально вглядываемся в небо, подобна микроскопическому виду на отдельную молекулу Н2О. Но, как и в случае стакана воды, когда вселенная изучается на достаточно больших масштабах, – масштабах порядка сотен миллионов световых лет, – она становится предельно однородной. Однородность излучения является, таким образом, "ископаемым" свидетельством однородности как законов физики, так и деталей окружающей среды везде в космосе.

 

Это заключение является великим следствием, поскольку однородность вселенной есть то, что позволяет нам определить концепцию времени, применимую для вселенной как целого. Если мы принимаем измерение изменений в качестве работающего определения истекшего времени, то однородность условий везде в пространстве является свидетельством однородности изменений везде в космосе, так что предполагает также и однородность прошедшего времени. Точно так же, как однородность земной геологической структуры позволяет геологу в Америке, и такому же в Африке, и другому в Азии прийти к согласию относительно возраста земной истории, однородность космической эволюции во всех местах пространства позволяет физику в галактике Млечного Пути, и такому же в галактике Андромеды, и другому в галактике Головастика прийти в целом к согласию по поводу возраста и истории вселенной. Конкретно, однородная эволюция вселенной означает, что часы здесь, часы в галактике Андромеды и часы в галактике Головастика будут, в среднем, отсчитывать время примерно одинаковым образом. Таким образом, однородность пространства обеспечивает универсальную синхронизацию.

 

Поскольку я далеко отставил важные детали (такие как расширение пространства, освещаемое в следующей секции), обсуждение выделяет ядро проблемы: время располагается на распутье симметрии. Если вселенная имеет абсолютную темпоральную симметрию, – если она полностью неизменна, – будет тяжело определить даже, что означает время. С другой стороны, если вселенная не имеет симметрии в пространстве, – если, например, фоновое излучение было бы совершенно бессистемным, имея дико отличающуюся температуру в разных областях, – время с космологической точки зрения имело бы мало смысла. Часы в разных местах отсчитывали бы время с разным темпом, так что, если бы вы спросили, на что были похожи вещи, когда вселенной было 3 миллиарда лет, ответ зависел бы от того, на чьи часы вы посмотрели, чтобы увидеть, что эти 3 миллиарда лет истекли. Определение времени было бы затруднено. К счастью, наша вселенная не имеет так много симметрии, чтобы сделать время бессмысленным, но имеет достаточно симметрии, чтобы мы могли избежать таких сложностей, позволяя нам говорить о ее полном возрасте и ее полной эволюции сквозь время.

 

Итак, теперь обратим наше внимание на эту эволюцию и рассмотрим историю вселенной.

 

 

Растягивая ткань

 

История вселенной выглядит огромным объектом, но в рамках грубого, эскизного наброска является неожиданно простой и зависит в большой части от одного существенного факта: вселенная расширяется. Поскольку это является центральным элементом в разворачивании космической истории и, несомненно, является одним из наиболее глубоких человеческих открытий, рассмотрим коротко, как мы узнали, что это так.

 

В 1929 Эдвин Хаббл, используя 100-дюймовый телескоп в обсерватории Маунт-Вильсон в Пасадене, Калифорния, нашел, что пара дюжин галактик, которые он смог детектировать, все удаляются прочь.[5] Фактически Хаббл нашел, что чем более удаленной является галактика, тем быстрее ее удаление. Чтобы дать представление о масштабах, более уточненные версии оригинальных наблюдений Хаббла (которые изучали тысячи галактик, используя в числе оборудования пространственный (орбитальный) телескоп имени Хаббла) показывают, что галактики, которые удалены от нас на 100 миллионов световых лет, удаляются со скоростью около 5,5 миллиона миль в час, те же, до которых 200 миллионов световых лет, удаляются в два раза быстрее, около 11 миллионов миль в час, а те, до которых 300 миллионов световых лет, улетают в три раза быстрее, около 16,5 миллионов миль в час, и так далее. Открытие Хаббла было шокирующим, поскольку господствовавшие научные и философские убеждения состояли в том, что вселенная должна быть на своих самых больших масштабах статической, бесконечной, фиксированной и неизменной. Но Хаббл одним ударом вдребезги разбил этот взгляд. И в удивительном слиянии теории и эксперимента ОТО Эйнштейна оказалась способной обеспечить превосходное объяснение открытию Хаббла.

 

На самом деле, вы можете не думать, что подход к объяснению может быть слишком сложным. Тем не менее, если вы ходили по заводу и видели, сколько сортов материалов неистово вылетают во всех направлениях, вы, вероятно, думали, что там произошел взрыв. Но если вы пропутешествуете назад вдоль путей, которым следует стружка металла и глыбы бетона, вы найдете их всех объединяющимися в месте, которое, вероятно, могло бы поспорить за звание источника взрыва. По тем же самым причинам, поскольку вид с Земли, – как свидетельствуют хаббловские и последующие наблюдения, – показывает, что галактики разлетаются, вы можете подумать, что наше положение в пространстве было местом древнего взрыва, который однородно разбросал сырой материал звезд и галактик. Проблема с этой теорией, однако, в том, что она выделяет один регион в пространстве – наш регион – как уникальный, поскольку делает его местом рождения вселенной. Будь это так, это повлекло бы за собой глубоко сидящую асимметрию: физические условия в областях, удаленных от изначального взрыва, – удаленных от нас, – были бы сильно отличающимися от условий здесь. Поскольку в астрономических данных нет подтверждений такой асимметрии и, более того, поскольку мы с большим подозрением относимся к антропоцентрическим объяснениям, смешанным с докоперниковским мышлением, требуется более изощренная интерпретация открытия Хаббла, одна из тех, в которых наше положение не занимает некоторое особое место в космическом порядке.

 

ОТО обеспечивает такую интерпретацию. С ОТО Эйнштейн нашел, что пространство и время являются эластичными, а не неподвижными, растягиваемыми, а не жесткими; и он обеспечил уравнения, которые точно говорят нам, как пространство и время откликаются на присутствие материи и энергии. В 1920е годы русский математик и метеоролог Александр Фридман и бельгийский священник и астроном Жорж Леметр независимо проанализировали уравнения Эйнштейна, когда те применены ко всей вселенной, и оба нашли кое-что поразительное. Точно так же, как гравитационное притяжение Земли предполагает, что бейсбольный мяч, запущенный высоко над принимающим, должен либо направляться дальше вверх, либо направляться вниз, но, определенно, не может остановиться (исключая отдельный момент, когда он достигает своей высшей точки), Фридман и Леметр обнаружили, что гравитационное притяжение материи и излучения, распределенных по всему космосу, подразумевает, что ткань пространства должна или растягиваться или сжиматься, но что она не может пребывать с фиксированным размером. Фактически, это один из редких примеров, в которых метафора не только схватывает суть физики, но также и ее математическое содержание, поскольку, как оказалось, уравнения, управляющие высотой полета бейсбольного мяча над землей, почти идентичны уравнениям Эйнштейна, управляющим размером вселенной.[6]


Дата добавления: 2015-11-16; просмотров: 33 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Ткань космоса: Пространство, время и структура реальности 19 страница| Ткань космоса: Пространство, время и структура реальности 21 страница

mybiblioteka.su - 2015-2024 год. (0.015 сек.)