Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Ткань космоса: Пространство, время и структура реальности 2 страница

Ткань космоса: Пространство, время и структура реальности 4 страница | Ткань космоса: Пространство, время и структура реальности 5 страница | Ткань космоса: Пространство, время и структура реальности 6 страница | Ткань космоса: Пространство, время и структура реальности 7 страница | Ткань космоса: Пространство, время и структура реальности 8 страница | Ткань космоса: Пространство, время и структура реальности 9 страница | Ткань космоса: Пространство, время и структура реальности 10 страница | Ткань космоса: Пространство, время и структура реальности 11 страница | Ткань космоса: Пространство, время и структура реальности 12 страница | Ткань космоса: Пространство, время и структура реальности 13 страница |


Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

 

Две теории относительности являются наиболее драгоценными достижениями человеческого рода, и с их помощью Эйнштейн опрокинул ньютоновскую концепцию реальности. Даже если ньютоновская физика, кажется, сильно поддерживает математически то, что мы ощущаем физически, действительность, которую она описывает, не является действительностью нашего мира. Наша действительность релятивистская. К тому же, поскольку различие между классической и релятивистской реальностями проявляется только в экстремальных условиях (таких как экстремально высокие скорости и гравитация), ньютоновская физика все еще обеспечивает приближение, которое демонстрирует экстремальную точность и применимо во многих условиях. Но утилитарность и реальность суть очень разные стандарты. Как мы увидим, характерные черты пространства и времени, которые для многих из нас являются второй натурой, оказались фикцией, вытекающей из ложных ньютоновских взглядов.

 

 

Квантовая реальность

 

Вторая аномалия, о которой упоминал лорд Кельвин, привела к квантовой революции, одному из величайших потрясений, которому когда-либо подвергались современные человеческие представления. Со временем огонь утих и дым рассеялся, облицовка классической физики была отменена вновь возникшими рамками квантовой реальности.

 

Коренная особенность классической физики заключается в том, что если вы знаете положения и скорости всех объектов в отдельный момент времени, ньютоновские уравнения вместе с их максвелловскими дополнениями могут предсказать вам их положения и скорости в любой другой момент времени, прошлый или будущий. Без всякой неопределенности классическая физика декларирует, что прошлое и будущее выгравированы в настоящем. Эта особенность также присуща как специальной, так и общей теориям относительности. Хотя релятивистские концепции прошлого и будущего более утонченные, чем их классические двойники (Главы 3 и 5), релятивистские уравнения вместе с полным знанием о настоящем определяют их так же полностью.

 

Однако, к 1930м годам физики приложили усилия для введения целой новой концептуальной схемы, названной квантовой механикой. Совершенно неожиданно они нашли, что только квантовые законы были в состоянии разрешить массу головоломок и объяснить многообразие вновь полученных данных из атомной и субатомной областей. Но в соответствии с квантовыми законами, даже если вы делаете максимально возможно точные измерения того, в каком состоянии вещи находятся сегодня, лучшее, что вы можете в любое время надеяться сделать, это предсказать вероятности того, что вещи будут в том или ином состоянии в некоторый выбранный момент времени в будущем, или что вещи были в том или ином состоянии в некоторый выбранный момент времени в прошлом. Вселенная, согласно квантовой механике, не выгравирована в настоящем; вселенная, согласно квантовой механике, принимает участие в игре случая. Хотя все еще идут споры о точности, с которой указанные исследования должны интерпретироваться, большинство физиков согласны, что вероятность глубоко вплетена в ткань квантовой реальности. В то время как человеческая интуиция и ее воплощение в классической физике рассматривают реальность, в которой вещи всегда определяемы в том или ином состоянии, квантовая механика описывает реальность, в которой вещи в какой-то момент времени находятся в неопределенности, в неясности существования, частично в одном состоянии и частично в другом. Вещи становятся определенными только тогда, когда на них воздействует подходящее наблюдение, чтобы отставить квантовые вероятности и получить определенный результат опыта. При этом результат, который реализуется, не может быть предсказан, – мы можем предсказать только возможность, что вещи окажутся в том или ином состоянии.

 

Это, окровенно говоря, странно. Мы не привыкли к реальности, которая остается неопределенной до восприятия. Но странности квантовой механики на этом не заканчиваются. По меньшей мере, поразительной является особенность, восходящая к статье Эйнштейна, написанной в 1935 с двумя юными коллегами, Натаном Розеном и Борисом Подольским, и предназначавшейся для атаки на квантовую теорию.[3] Вместе с происходившими затем извивами научного прогресса сейчас статья Эйнштейна может рассматриваться как одна из первых, указывающих, что квантовая механика – если брать по сути – подразумевает, что нечто, что вы сделали здесь, может мгновенно быть связанным с чем-то, происходящим где-то, несмотря на расстояние. Эйнштейн рассматривал такие мгновенные связи как нелепые и интерпретировал их появление из математики квантовой механики как свидетельство, что теория нуждается в больших доработках, прежде чем она достигнет приемлемой формы. Но в районе 1980х, когда как теоретические, так и технологические разработки привели экспериментальные наблюдения к рождению этих подразумевающихся квантовых абсурдностей, исследователи подтвердили, что возможна мгновенная связь между тем, что происходит в сильно удаленных друг от друга местах. При четких лабораторных условиях реально происходит то, что Эйнштейн считал абсурдом (Глава 4).

 

Проявления этих особенностей квантовой механики для нашей картины реальности являются объектом продолжающихся исследований. Многие ученые, я в том числе, рассматривают их как часть радикального квантового обновления смысла и свойств пространства. Обычно пространственная удаленность влечет за собой физическую независимость. Если вы хотите проконтролировать, что происходит на другой стороне футбольного поля, вы идете туда или, в самом крайнем случае, вы посылаете кого-нибудь или что-нибудь (ассистирующего тренера, скачущие молекулы воздуха, передающие речь, луч света для привлечения чьего-либо внимания и т.п.) через поле для передачи своего воздействия. Если вы не делаете этого, – если вы остаетесь пространственно изолированными, – вы не оказываете влияния, так как лежащее в промежутке пространство обеспечивает отсутствие физического взаимодействия. Квантовая механика ставит под вопрос такой взгляд, показывая, как минимум, в определенных обстоятельствах, способность преодолеть пространство; дальнодействующие квантовые взаимодействия могут обойти пространственное разделение. Два объекта могут находиться в пространстве на большом расстоянии друг от друга, но, что касается квантовой механики, они ведут себя так, как если бы они были единой сущностью. Более того, поскольку Эйнштейн нашел тесную связь между пространством и временем, квантовые взаимодействия также протягивают щупальца во времени. Мы коротко столкнемся с некоторыми остроумными и в полном смысле слова удивительными экспериментами, которые недавно исследовали ряд потрясающих пространственно-временных взаимодействий, которые влечет за собой квантовая механика, и, как мы увидим, они сильнейшим образом бросают вызов классическому интуитивному мировоззрению, которого большинство из нас придерживается.

 

Немотря на эти и многие другие впечатляющие наблюдения, остается одна из основополагающих особенностей времени, – то, что оно кажется имеющим направление из прошлого в будущее, – для которой ни теория относительности, ни квантовая механика не обеспечивают объяснения. Вместо этого убедительный прогресс пришел только из исследований в области физики, именуемой космологией.

 

 

Космологическая реальность

 

Раскрыть наши глаза на правильную природу вселенной всегда было одной из приоритетных целей физики. Тяжело представить себе, что многочисленные головоломные эксперименты учат, как мы имеем на протяжении последнего столетия, что реальность, которую мы ощущаем, является лишь отблеском существующей реальности. Но физика имеет также не менее важную заботу объяснить элементы реальности, которые мы действительно ощущаем. Из нашего быстрого марша сквозь историю физики может показаться, как будто это уже достигнуто и как будто повседневный опыт адресуется к достижениям физики до двадцатого века. В некоторой степени это правильно. Но даже когда речь идет о повседневности, мы далеки от полного понимания. И среди особенностей повседневного опыта, что сопротивляются полному объяснению, есть одна, которая приводит к одной из глубочайших нерешенных тайн в современной физике – тайне, которую великий британский физик сэр Артур Эддингтон назвал стрелой времени.[4] Мы принимаем на веру, что имеется направление, в котором вещи раскрываются во времени. Яйцо разбивается, но не собирается вновь; свечи плавятся, но не сплавляются назад; воспоминания относятся к прошлому, никогда к будущему; люди стареют, но не молодеют. Эти асимметрии управляют нашей жизнью; отличие между прямым и обратным во времени есть господствующий элемент экспериментальной реальности. Если прямое и обратное во времени проявляло бы ту же симметрию, какую мы видим между левым и правым, или между назад и вперед, мир был бы нераспознаваем. Яйцо складывалось бы так же часто, как и разбивалось; свечи сплавлялись бы так же часто, как и расплавлялись; мы помнили бы о будущем столько же, сколько и о прошлом; люди молодели бы так же часто, как и старели. Определенно, такая симметричная во времени реальность – не наша реальность. Но откуда происходит асимметрия времени? Что отвечает за это наиболее основное из всех свойств времени?

 

Оказывается, что известные и признанные законы физики не проявляют такой асимметрии (Глава 6): каждое направление во времени, вперед или назад, трактуется законами без отличий. И в этом причина великой головоломки. Ничто в уравнениях фундаментальной физики не отмечает рассмотрение одного направления во времени отлично от другого, и это полностью отличается от всего, что мы ощущаем.[5]

 

Удивительно, что даже если мы фокусируемся на обычных особенностях повседневной жизни, наиболее убедительное разрешение этого рассогласования между фундаментальной физикой и повседневным опытом требует от нас пристально рассмотреть наиболее необычное из событий – начало вселенной. Осмысление этого началось с работы великого физика девятнадцатого столетия Людвига Больцмана и за последующие годы разрабатывалось многими исследователями, наиболее примечательный из которых британский математик Роджер Пенроуз. Как мы увидим, специальные физические условия в начале вселенной (сильно упорядоченная внешняя среда в момент или сразу после Большого взрыва) могут оставить след в направлении времени, точно как завод часов, перевод их пружины в сильно упорядоченное начальное состояние позволяет им тикать вперед. Таким образом, в смысле, который мы можем определить, разбивание – в противоположность собиранию – яйца дает свидетельство условий при рождении вселенной примерно 14 миллиардов лет назад.

 

Эта неожиданная связь между повседневным опытом и ранней вселенной позволяет проникнуть в вопрос, почему события разворачиваются одним образом во времени и никогда обратным, но это не есть полное разрешение тайны стрелы времени. Наоборот, это сдвигает головоломку в область космологии – изучения происхождения и эволюции космоса в целом – и вынуждает нас искать, действительно ли вселенная имела высокоупорядоченное начало, как этого требует объяснение стрелы времени.

 

Космология находится среди старейших вещей, увлекающих наш род. И это не чудо. Мы рассказчики историй, а какая история может быть более великой, чем история творения? На протяжении последних нескольких тысячелетий мировые религиозные и философские традиции взвешивали версии, каким образом все сущее – вселенная – началось. Наука тоже за свою долгую историю прикладывала руки к космологии. Но было открытие Эйнштейном общей теории относительности, что отмечается как рождение современной научной космологии.

 

Вскоре после публикации Эйнштейном его общей теории относительности и он и другие применили ее ко вселенной в целом. В течение нескольких десятилетий их исследования привели к основным понятиям того, что сейчас называют теорией Большого взрыва, приближению, которое успешно объясняет многие особенности астрономических наблюдений (Глава 8). В середине 1960х свидетельства в поддержку космологии Большого взрыва еще более усилились после того, как наблюдения открыли почти однородный газ микроволнового излучения, пронизывающий пространство, – невидимый для невооруженного глаза, но легко измеримый микроволновыми детекторами, – что было предсказано теорией. И определенно, в 1970е после десятилетия подробных исследований и значительного прогресса в определении того, как основные явления в космосе соответствуют экстремальным начальным изменениям в тепле и температуре, теория Большого взрыва закрепила за собой место ведущей космологической теории (Глава 9).

 

Несмотря на свои успехи, теория страдает существенными недостатками. Она с трудом объясняет, почему пространство всюду имеет вид, открываемый детальными астрономическими наблюдениями, и она не позволяет объяснить, почему температура микроволнового излучения, интенсивно изучаемая с момента его открытия, оказывается строго однородной по небу. Более того, что имеет отношение первостепенной важности к обсуждаемой нами истории, теория Большого взрыва не обеспечивает неопровержимых доводов, почему вселенная могла быть более упорядочена вблизи самого начала, как требуется для объяснения стрелы времени.

 

Эти и иные спорные вопросы инспирировали серьезный прорыв в конце 1970х и начале 1980х, известный как инфляционная космология (Глава 10). Инфляционная космология модифицирует теорию Большого взрыва путем введения экстремально короткого периода поражающе быстрого расширения во время самой ранней вселенной (в этом приближении размер вселенной увеличился на множитель, больший чем миллион триллионов триллионов, за время, меньшее чем миллионная триллионной триллионной доли секунды). Как станет ясно, этот сумасшедший рост молодой вселенной обходным путем движется к заполнению дыры, остающейся в модели Большого взрыва, – к объяснению картины пространства и однородности микроволнового излучения, а также к предположению, почему ранняя вселенная могла быть высоко упорядоченной, – так что мы все переживаем существенный прогресс в объяснении как астрономических наблюдений, так и стрелы времени (Глава 11).

 

Однако, вопреки этим высоким достижениям, за два десятилетия инфляционная космология утаивала свой собственный смущающий вопрос. Как и стандартная теория Большого взрыва, которую она модифицирует, инфляционная космология основывается на уравнениях Эйнштейна, открытых вместе с его общей теорией относительности. Несмотря на большое число исследовательских статей, подтверждающих силу уравнений Эйнштейна для точного описания больших и массивных объектов, физики давно знают, что точный теоретический анализ малых объектов, – таких как наблюдаемая вселенная, когда ее возраст был всего лишь долю секунды, – требует использования квантовой механики. Проблема, однако, в том, что когда уравнения общей теории относительности пытаются объединить с уравнениями квантовой механики, результат получается бедственный. Уравнения полностью разрушаются, и это мешает нам определить, как родилась вселенная и выполнялись ли при ее рождении условия, необходимые для объяснения стрелы времени.

 

Не будет преувеличением описать эту ситуацию как кошмар теоретиков: отсутствие математических средств, с которыми нужно анализировать важнейшие области, которые лежат вне экспериментальной достижимости. И поскольку пространство и время так сильно связаны с этой специфической недостижимой областью – истоком вселенной, – понимание пространства и времени полностью требует от нас поиска уравнений, которые могли бы справиться с экстремальными условиями огромных плотностей, энергий и температур, характеризующих ранние моменты вселенной. Это абсолютно важнейшая цель и она, во что верят многие физики, требует разработки так называемой единой теории.

 

 

Единая реальность

 

На протяжении последних нескольких столетий физики пытались объединить наши представления о естественном мире, для чего пытались показать, что несходные и, очевидно, особые явления в действительности управляются одним набором физических законов. Для Эйнштейна эта цель объединения – объяснение широчайшего массива явлений через несколько физических принципов – стала страстью жизни. Своими двумя теориями относительности Эйнштейн объединил пространство, время и гравитацию. Но этот успех только раззадорил его на большие размышления. Он мечтал найти простую и все в себя включающую систему взглядов, способную охватить все законы природы; он называл эту систему взглядов единой теорией. Хотя теперь и тогда распространялись слухи, что Эйнштейн нашел единую теорию, все такие заявления оказывались необоснованными; мечта Эйнштейна осталась неисполненной.

 

Эйнштейновская сосредоточенность на единой теории на протяжении последних тридцати лет его жизни отстранила его от генерального пути физики. Многие более молодые физики рассматривали его отшельнические поиски величайшей из всех теорий как бред великого человека, который в свои последние годы свернул на ложный путь. Но за десятилетия с момента ухода Эйнштейна растущее число физиков подхватили его незавершенный поиск. Сегодня разработка единой теории расценивается как одна из наиболее важных проблем теоретической физики.

 

За многие годы физики нашли, что центральной помехой для реализации единой теории является фундаментальный конфликт между двумя главными прорывными направлениями физики двадцатого века: общей теорией относительности и квантовой механикой. Хотя эти две системы обычно применяются в сильно отличающихся областях – общая теория относительности для больших тел вроде звезд и галактик, квантовая механика для малых тел вроде молекул и атомов, – каждая теория претендует на универсальность и на способность работать во всех областях. Однако, как отмечалось выше, как только теории используются в связке, их объединенные уравнения дают бессмысленные ответы. Например, когда квантовая механика используется с общей теорией относительности для расчета вероятности некоторого процесса или имеет место иное включение гравитации, ответ, который часто находится, не похож на ответ вроде вероятности 24 процента, или 63 процента или 91 процент; вместо этого из объединенной математики неожиданно появляется бесконечная вероятность. Такая высокая вероятность не означает, что вы должны биться об заклад на нее, поскольку ее можно вспугнуть. Вероятности более 100 процентов бессмысленны. Расчеты, которые производят бесконечную вероятность, просто показывают, что объединенные уравнения общей теории относительности и квантовой механики сходят с ума.

 

Ученые осведомлены о напряженных отношениях между общей теорией относительности и квантовой механикой больше половины века, но в течение долгого времени сравнительно немногие чувствововали необходимость поиска решения. Вместо этого большинство исследователей использовали общую теорию относительности исключительно для анализа больших и массивных объектов, тогда как для квантовой механики отводили задачу исключительно анализа малых и легких объектов, тщательно удерживая каждую теорию на безопасном расстоянии от другой, так что их взаимная враждебность держалась под контролем. В течение лет эта попытка ареста позволила достигнуть ошеломляющих успехов в нашем понимании каждой из областей, но это не привело к прочному миру.

 

Очень немногие области – экстремальные физические ситуации, в которых объекты и массивны и малы, – попали прямо в демилитаризованную зону, требуя, чтобы общая теория относительности и квантовая механика воздействовали одновременно. Центр черной дыры, в которую обрушиваются целые звезды под их собственным весом в мельчайшую точку, и Большой взрыв, в котором целая наблюдаемая вселенная, как предполагается, была сжата до ядрышка, значительно меньшего, чем отдельный атом, представляют два наиболее типичных примера. Без успешного союза между общей теорией относительности и квантовой механикой конец коллапсирующей звезды и начало вселенной навсегда останутся тайнами. Многие ученые были настроены сохранять эти области подальше друг от друга или, как минимум, откладывали раздумья о них до появления другой, более разрешимой проблемы.

 

Но некоторые исследователи не могли ждать. Конфликт среди известных законов физики означает неспособность ухватить глубинную истину, и этого было достаточно, чтобы легко удержать этих ученых от покоя. Те, кто глубоко задумывается, находят глубины вод и бурление потоков. На протяжении длительного времени исследователи добились лишь небольшого прогресса; вещи выглядели мрачными. Даже при этих условиях упорство тех, кто имел решимость установить курс и оставил в живых мечту об объединении общей теории относительности и квантовой механики, было вознаграждено. Ученые теперь записывают на свой счет пути, обнародованные такими исследователями, и приближаются к гармоничному слиянию законов большого и малого. Подход, который, как согласны многие, является лидером соревнований, это теория суперструн (Глава 12).

 

Как мы увидим, теория суперструн начинается с предложения нового ответа на старый вопрос: что является мельчайшей неделимой составляющей материи? В течение многих десятилетий общепринятый ответ был, что материя состоит из частиц – электронов и кварков, – которые моделируются как точки, которые неделимы и которые не имеют размера и внутренней структуры. Общепринятая теория утверждала, а эксперименты подтверждали, что эти частицы соединяются различными путями, образуя протоны, нейтроны и широкое разнообразие атомов и молекул, создавая все, с чем мы постоянно сталкиваемся. Теория суперструн рассказывает иную историю. Она не отрицает ключевую роль, которую играют электроны, кварки и другие виды частиц, проявляющихся в эксперименте, но утверждает, что эти частицы не являются точками. Вместо этого, в сответствии с теорией суперструн каждая частица составлена крошечной нитью энергии, в несколько сотен миллиардов миллиардов раз меньшей, чем отдельные атомные ядра (намного меньше, чем мы можем в настоящее время исследовать), которая имеет форму маленькой струны. И точно так же, как струна скрипки может вибрировать различными способами, каждый из которых создает различные музыкальные тона, нити теории суперструн также могут колебаться различными способами. Но эти колебания не производят различные музыкальные ноты; поразительно, теория утверждает, что они производят различные свойства частиц. Крошечная струна, вибрирующая одним образом, будет иметь массу и электрический заряд электрона; в соответствии с теорией такая колеблющаяся струна будет тем, что мы традиционно называем электроном. Крошечная струна, вибрирующая другим образом, будет иметь все необходимые свойства, чтобы идентифицировать ее как кварк, нейтрино или любой другой вид частицы. Все семейства частиц унифицируются в теории суперструн, поскольку каждая появляется из различных колебательных состояний (мод), осуществляемых одним и тем же лежащим в основании объектом.

 

Двигаясь от точек к струнам-которые-так-малы-что-выглядят-как-точки, можно не отследить, что такого ужасно важного изменится в перспективе. Однако такое есть. Из такого скромного начала теория суперструн объединяет общую теорию относительности и квантовую механику в единую последовательную теорию, изгоняя разрушительные бесконечные вероятности, от которых страдали первоначально предпринимавшиеся объединения. И если этого недостаточно, теория суперструн обнаруживает широкую необходимость вшивания всех сил природы и всей материи в один и тот же теоретический гобелен. Короче говоря, теория суперструн является главным кандидатом на роль единой теории Эйнштейна.

 

Это главные утверждения и они, если они правильны, представляют монументальный шаг вперед. Но более ошеломительная особенность теории суперструн, которая, я в этом почти не сомневаюсь, вызвала бы сердечный приступ у Эйнштейна, это ее глубокое воздействие на наши представления о ткани космоса. Как мы увидим, предлагаемый теорией суперструн синтез общей теории относительности и квантовой механики будет математически осмыслен, только если мы подвергнем нашу концепцию пространства-времени еще одному потрясению. Вместо трех пространственных измерений и одного временного измерения, следующих из повседневного опыта, теория суперструн требует девяти пространственных измерений и одного временного. А в более сильной инкарнации теории суперструн, известной как М-теория, объединение требует десять пространственных и одно временное измерение – космический фундамент складывается в целом из одиннадцати пространственно-временных измерений. Поскольку мы не видим эти дополнительные измерения, теория суперструн говорит нам, что мы слишком бегло осмотрели ограниченный ломтик реальности.

 

Конечно, отсутствие наблюдательного подтверждения дополнительных измерений может также означать, что они не существуют и что теория суперструн ложная. Однако, движение к такому заключению будет экстремально поспешным. Даже за десятилетия до открытия теории суперструн мечтательные ученые, включая Эйнштейна, обдумывали идею о пространственных измерениях вне тех, которые мы видим, и выдвигали возможности, где эти измерения могут быть скрыты. Струнные теоретики, по-существу, усовершенствовали эти идеи и нашли, что дополнительные измерения могут быть так тесно скрученными, что они слишком малы для нас или любого нашего существующего оборудования, чтобы их видеть (Глава 12), или он могут быть большими, но невидимыми в рамках тех способов, которыми мы исследуем вселенную (Глава 13). Каждый сценарий приводит к глубоким следствиям. Через их влияние на струнные колебания геометрический образ мельчайших скрученных измерений может содержать ответы на некоторые из самых основных вопросов, вроде того, почему наша вселенная имеет звезды и планеты. А пространство, обеспечиваемое большими дополнительными измерениями, может позволять даже нечто более примечательное: другие соседние миры – не соседние в обычном пространстве, а соседние в дополнительных измерениях, – о которых мы поэтому полностью не осведомлены.

 

Обе идеи существования дополнительных измерений не просто теоретическое парение в облаках. Они в скором времени могут быть проверены. Если они существуют, дополнительные измерения могут привести к зрелищным результатам в следующем поколении атомных ускорителей, таким как первая синтезированная человеком микроскопическая черная дыра или производство гигантского разнообразия новых, никогда ранее не наблюдавшихся видов частиц (Глава 13). Эти и другие экзотические результаты могут обеспечить первое проявление размерностей, лежащих вне непосредственно видимых, обеспечивая нам шаг к установлению теории суперструн, как давно разыскиваемой единой теории.

 

Если теория суперструн подтвердит свою точность, мы будем в силах допустить, что реальность, которую мы знаем, является тонким шелком, накинутым на толстую и богато структурированную ткань космоса. Вопреки декларации Камю, определение числа пространственных измерений – и, в особенности, нахождение, что их не просто три, – обеспечит намного больше, чем интересные для науки, но, в конечном счете, несущественные детали. Открытие дополнительных измерений покажет, что полнота человеческого опыта оставляет нас полностью неосведомленными об основных и существенных аспектах вселенной. Это будет сильнейший аргумент в пользу того, что даже те особенности космоса, которые мы представляли себе легко доступными для человеческих ощущений, могут не быть таковыми.

 

 

Реальность прошлого и будущего

 

С разработкой теории суперструн исследователи настроены оптимистично, что мы, наконец, имеем структуру, которая не разрушится при любых условиях, не важно, насколько экстремальных, позволяя нам когда-нибудь всмотреться с нашими уравнениями назад и изучить, что происходило в тот момент, когда вселенная, насколько мы это знаем, началась. На сегодня никто не достиг достаточной сообразительности, чтобы недвусмысленно применить теорию к Большому взрыву, но понимание космологии в соответствии с теорией суперструн становится одним из высших приоритетов сегодняшних исследований. На протяжении последних нескольких лет энергичные исследовательские программы по суперструнной космологии во всем мире привели к новым космологическим системам взглядов (Глава 13), предлагающим новые пути для проверки теории суперструн с использованиям астрофизических наблюдений (Глава 14) и обеспечивающим некоторые первые взгляды на роль, которую теория может сыграть в объяснении стрелы времени.

 

Стрела времени через определяющую роль, которую она играет в повседневной жизни, и ее интимную связь с началом вселенной лежит на уникальном пороге между реальностью, которую мы ощущаем, и более утонченной реальностью, которую наука переднего края пытается раскрыть. Раз так, то вопрос о стреле времени обеспечивает общую нить, которая бежит через многие разработки, которые мы будем обсуждать, и он снова и снова будет всплывать на поверхность в следующих главах. Это пробный камень. Среди многих факторов, формирующих жизнь, которую мы ведем, время находится среди наиболее доминирующих. Раз уж мы продолжаем добывать выгоды из теории суперструн и ее расширения, М-теории, наши космологические взгляды будут углубляться, делая видение и начала времени, и его стрелы все более четким. Если мы позволим нашему воображению двигаться совершенно свободно, мы можем даже узреть, что глубина наших представлений однажды позволит нам плавать в пространстве-времени и, следовательно, освободиться от пространственно-временных цепей, в которые мы были закованы тысячелетия (Глава 15).


Дата добавления: 2015-11-16; просмотров: 43 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Ткань космоса: Пространство, время и структура реальности 1 страница| Ткань космоса: Пространство, время и структура реальности 3 страница

mybiblioteka.su - 2015-2024 год. (0.016 сек.)