Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Биомеханика мышц



Читайте также:
  1. Биомеханика суставов

Конечной целью изучения суставов и мышц является понимание движений человеческого тела. Учение о движениях - кинезиология - является одним из разделов биомеханики. Последняя представляет собой специальную отрасль биологии, которая занимается статикой, кинематикой и динамикой организма животных и человека. Биомеханика опирается на данные анатомии и физиологии, рассматривая их с точки зрения теоретической и прикладной механики. Наиболее разработанной является биомеханика аппарата движения. Наряду с этим развиваются и другие разделы биомеханики, связанные с изучением работы сердца, кровообращения, дыхания и т.п.

Изучение движений человека имеет большое значение для самых различных областей науки и практики. В медицине данные о механизмах движений используются при лечении больных с нарушениями функций опорно-двигательного аппарата. Кинезиология представляет одну из основ теории и практики физической культуры и спорта. Без учета законов биомеханики невозможно разрабатывать вопросы, связанные с совершенствованием трудовых процессов, научной организацией труда. Родной сестрой биомеханики является бионика, которая занимается решением разнообразных технических проблем на основе знаний, полученных при изучении организмов. Одним из практических приложений бионики в медицине является конструирование протезов, которые наилучшим образом замещают утраченный орган или часть тела. Понятно, что при решении подобного рода задач необходимо знать законы кинезиологии.

Аппарат движения представляет систему взаимосвязанных, подвижных кинематических звеньев, которые образуют кинематические цепи; последние могут быть замкнутыми и открытыми. Роль мышц заключается в перемещении кинематических звеньев относительно друг друга или в их удержании в определенном положении. В зависимости от этого различают динамическую и статическую работу мышц.

Работа мышц подчиняется законам рычага. В аппарате движения имеются три рода рычагов.

1. Рычаг первого рода называют рычагом равновесия. В этом рычаге точка опоры располагается между точкой приложения силы и точкой сопротивления, причем обе силы действуют в одном направлении. Примером является удерживание головы в равновесном состоянии в атланто-затылочном суставе.

2. Рычаг второго рода является «рычагом силы». Точка сопротивления находится между точкой опоры и точкой приложения силы. Примером такого рычага может служить стопа при подъеме на полупальцы.

3. Рычаг третьего рода, или «рычаг скорости», имеет наибольшее распространение при движениях. Точка приложения мышечной тяги располагается вблизи точки опоры и имеет значительно меньшее плечо, чем противодействующая ей сила сопротивления. Примером такого рычага является действие сгибателей предплечья при поднимании или удерживании в кисти какой-либо тяжести. Плечо равнодействующей мышц равно в этом случае 2 см, а плеча удерживаемой кистью тяжести равно 20 см. Поэтому при обычной подъемной силе сгибателей предплечья, равной 160 кг, нетренированный человек может удержать при согнутом предплечье примерно 16 кг.

Иллюстрации

 

 

В основе работы мышц лежит способность мышечных волокон к сокращению. Поперечно-полосатые волокна при сокращении укорачиваются в среднем на 30-40% своей первоначальной длины. При этом одиночное мышечное волокно развивает напряжение равное 0.1-0.2 г. Все скелетные мышцы человека содержат около 300 млн. волокон. Следовательно, суммарная сила всех мышц составила бы 30 000 кг. В действительности мускулатура развивает лишь небольшую часть этой громадной силы, так как обычно сокращаются не все мышцы и в каждой сократившейся мышце бывает активной лишь часть мионов. Соответственно числу сократившихся мионов различают парциальное и тотальное сокращение мышцы. Разницу между тем и другим можно показать на примере большой грудной мышцы. При сгибании в плечевом суставе ненагруженной руки сокращается лишь часть мионов ключичной части мышцы, при боксерском ударе происходит тотальное сокращение большой грудной мышцы. При некоторых заболеваниях, сопровождающихся судорогами (столбняк), мышцы развивают максимальное напряжение, и это может приводить даже к переломам костей.

Сила скелетной мышцы определяется следующими факторами:

1. Физиологический поперечник мышцы, под которым понимают сумму площадей поперечного сечения всех поперечнополосатых мышечных волокон. Следует отметить, что физиологический поперечник не совпадает с анатомическим поперечником. Анатомический поперечник включает площадь поперечного сечения мышечных волокон, сосудов, нервов и соединительной ткани. Он соответствует площади поперечного сечения собственно мышечной части мышцы.

2. Величина площади опоры на костях, хрящах или фасциях.

3. Способ проявления силы (какого рода рычаг действует на кости - рычаг равновесия, рычаг силы или рычаг скорости).

4. Степень нервного возбуждения.

5. Адекватность кровоснабжения и т. д.

Сравним сокращения мышц с параллельным и косым расположением волокон. При сокращении мышца с параллельными волокнами (портняжная мышца) укорачивается на 40% своей длины, но развивает небольшую силу. Косое расположение волокон имеют перистые мышцы. Они содержат больше волокон, чем мышцы с параллельными пучками, и волокна в них короче. При сокращении изменяется угол, под которым волокна подходят к сухожилию, само сухожилие перемещается на меньшее расстояние, но мышца развивает большую силу. Но работа, совершаемая мышцами обоих видов, одинакова, так как проигрыш в силе у мышц с параллельными волокнами компенсируется выигрышем в расстоянии. Сила, приходящаяся на 1 см2 поперечного сечения, составляет у разных мышц от 6 до 16 кг, в среднем около 10 кг/см2. Считается, что подъемная сила мышц предплечья составляет примерно 160 кг, а сила задних мышц бедра - до 480 кг. В действительности человек может поднять и удержать гораздо меньший груз. Таким образом, мышечная система обладает значительным резервом силы. Это - один из факторов, определяющих надежность аппарата движения.

Быстрота сокращений мышц зависит от преобладания в их составе красных или белых волокон. У ряда животных довольно отчетливо различаются «красные» и «белые» мышцы. Первые состоят преимущественно из более темных и медленно сокращающихся волокон, в состав вторых входят в основном светлые, быстро сокращающиеся волокна. В соответствии с этим П.Ф.Лесгафт делил мышцы на два типа - сильные и ловкие. Дальнейшие исследования показали, что в большей части мышц светлые волокна перемешаны с темными. Например, передняя большеберцовая мышца содержит около 70% светлых и 30% темных волокон. Отмечается тенденция темных волокон концентрироваться в глубоко лежащих частях мышц, способных к длительному сокращению, связанному с поддержанием позы.

Такие функциональные особенности мышц, как амплитуда и направление производимых движений, тесно связаны с их формой и строением. Длинные и тонкие мышцы, имеющие небольшую площадь прикрепления к костям, как например длинный сгибатель пальцев, дают большую амплитуду движений. Короткие и толстые мышцы, напротив, осуществляют движения, имеющие небольшой размах (квадратная мышца поясницы). Мышцы с параллельным ходом волокон производят тягу в одном направлении. Перистые мышцы осуществляют более разнообразные движения. Веерообразные и широкие мышцы, сокращаясь отдельными частями, могут осуществлять тягу в нескольких направлениях.

Все крупные мышцы состоят из относительно самостоятельных в функциональном отношении частей. Так, трапециевидная, большая грудная, дельтовидная, передняя зубчатая мышцы обычно сокращаются отдельными пучками, которые производят различное действие. Лишь сравнительно мелкие мышцы, перекидывающиеся через один сустав, представляют собой анатомически и функционально единое целое.

Живая мышца характеризуется состоянием некоторого непроизвольного напряжения. Это напряжение называется тонусом мышцы. Тонус мышц регулируется ЦНС и от него зависит поза человека, его осанка.

Кинематическим действием мышц называют эффект, производимый ее неограниченным сокращением. Мак-Конейл с соавторами выделяют два общих закона кинематики мышц - закон сближения и закон раскручивания.

Закон сближения выражает тот известный факт, что при сокращении мышцы происходит взаимное сближение обоих ее концов - начала и прикрепления. В большинстве случаев один конец мышцы остается неподвижным, а другой перемещается в пространстве вместе с той костью, к которой он прикрепляется. Один и тот же конец мышцы в зависимости от характера движения является то фиксированным, то подвижным. Так, плечевая мышца обычно работает как сгибатель предплечья, ее фиксированная точка находится на плечевой кости, а подвижная точка - на локтевой кости. Но если предплечье и кисть стабилизированы, как это бывает при подтягивании на перекладине, то плечевая, мышца производит сгибание плеча. Фиксированная и подвижная точки теперь меняются местами. Таким образом, подвижная точка может соответствовать то прикреплению, то началу мышцы, в зависимости от взаимной подвижности звеньев кинематической цепи.

Закон раскручивания заключается в том, что мышца при своем сокращении стремится привести в одну плоскость линию своего начала и линию прикрепления. Этот закон относится только к тем мышцам, которые в начале своего сокращения являются скрученными. Сюда относятся, в частности, мышцы с перекрещивающимися пучками. Эффект раскручивания можно показать на ключичной части большой грудной мышцы. Линия начала этой мышцы на ключице проходит горизонтально, а линия прикрепления на плечевой кости имеет вертикальное направление. Сгибанием плеча обе линии приводятся в одну плоскость. Отсюда следует, что большая грудная мышца является сгибателем плеча.

Рассмотрим некоторые положения, касающиеся отношений между мышцами и суставами. Мышцы могут перекидываться через один, два и более суставов. В зависимости от этого различают мышцы одно-, дву- и многосуставные. Мышцы не только производят движения в тех суставах, мимо которых они проходят, но и тормозят их. Например, если производить сгибание бедра при разогнутом колене, то задние мышцы бедра, натягиваясь, тормозят его сгибание.

Расположение мышц вокруг суставов связано с характером движений в суставах. Вращение вокруг одной оси требует, по крайней мере, пары противоположно направленных сил. Можно показать, что при наличии N степеней свободы достаточно иметь N+1 мышц. Обычно число мышц, проводящих в движение сустав, бывает больше. Этим достигается более экономное использование мышц и возможно лучшее управление кинематическими звеньями. Мышцы располагаются или перпендикулярно к осям движения, или под некоторым углом к ним, но этот угол не может быть слишком малым, иначе будет происходить большая потеря силы.

Для анализа действия сил необходимо учитывать направление тяги мышц. Производить сложение сил, направленных в одну сторону, и вычитание сил, имеющих противоположное направление. Вращательные движения во всех суставах можно рассматривать как результат действия пары сил.

Одни мышцы начинаются вдали от сустава и прикрепляются поблизости от него. У других мышц начало находится вблизи сустава, а прикрепление удалено от сустава. Имеются существенные различия в действии мышц первого и второго рода. Чтобы установить их, необходимо произвести разложение мышечной тяги на три составляющие: 1) действующую перпендикулярно продольной оси кости, 2) действующую в направлении оси кости, 3) вращающую кость вокруг ее длинной оси.

Мышцы, тяга которых направлена перпендикулярно оси кости, начинаются далеко от сустава и прикрепляются вблизи него. Эти мышцы могут производить быстрые движения. Те мышцы, которые действуют преимущественно вдоль оси кости, начинаются вблизи сустава и прикрепляются на большем удалении от него. Они способствуют стабилизации сустава, прижимая кости одна к другой и предотвращая их разъединение при резких движениях. Если взять в качестве примера локтевой сустав, то мышцами первого рода являются двуглавая и плечевая, а мышцей второго рода - плечелучевая. В случаях, когда фиксированная и подвижная точки меняются местами, соответственно изменяется и действие мышц.

Имеются мышцы, сила тяги которых направлена так, что вызывает вращение кости. Такие мышцы при движениях обертываются вокруг кости. К ним относятся пронаторы и супинатор предплечья.

Большинство движений в суставах происходит с участием не одной, а нескольких мышц. С точки зрения группового действия мышцы подразделяются на первичные двигатели, синергисты и антагонисты. Первичными двигателями являются мышцы, производящие некоторое действие. Синергисты - это мышцы, которые участвуют в движении вместе с первичными двигателями и предотвращают их нежелательное действие. Примером синергии является сгибание пальцев при вытянутой руке. Сгибатели пальцев перекидываются через несколько суставов и при своем сокращении стремятся произвести сгибание во всех этих суставах. Сгибание кисти в лучезапястном суставе предотвращается благодаря сокращению разгибателей запястья, которые в данном случае играют роль синергистов по отношению к сгибателям пальцев.

Антагонисты действуют в направлении, противоположном первичным двигателям, и могут полностью им противодействовать. Антагонистами являются сгибатели и разгибатели, действующие на один и тот же сустав.

Первичные двигатели и их антагонисты при совместном сокращении производят фиксацию того или иного звена скелета. Например, взаимодействие мышц, расположенных выше и ниже подъязычной кости, способствуют фиксации этой кости, а вместе с ней и гортани, что имеет большое значение при голосообразовании. В качестве антагонистов могут выступать не только сократившиеся, но и расслабленные мышцы, которые в силу своей эластичности противодействуют растяжению. Такое действие расслабленной мышцы называют реактивным.

При многих движениях сокращение первичных двигателей сопровождается сокращением антагонистов, которые затем постепенно расслабляются, обеспечивая плавность движения. Электромиографические исследования показали, что сокращение антагонистов в начале движения длится лишь несколько миллисекунд, а затем антагонисты расслабляются и снова сокращаются за несколько миллисекунд до прекращения движения. В последней фазе движения они действуют как тормоз, предохраняя сустав от повреждения.

При анализе движений необходимо учитывать действие силы тяжести, которая всегда присутствует как «невидимая мышца». Каждая кость движется или фиксируется в суставе благодаря совместному действию силы тяжести и одной или нескольких мышц. Сила тяжести может выступать в качестве первичного двигателя или антагониста. Функция многих мышц заключается в противодействии силе тяжести. Антигравитационным действием обладают в первую очередь те мышцы, сила тяги которых направлена перпендикулярно оси кости.

Стабилизирующее действие силы тяжести может быть показано на примере опущенной руки. При этом все мышцы оказываются неактивными. Головка плечевой кости прижимается к суставной впадине только силой тяжести и реактивным действием надостной мышцы. Лишь при нагруженной руке в надостной мышце возникает напряжение. Аналогично этому у спокойно стоящего человека регистрируется только слабая активность подвздошно-поясничной мышцы.

Таковы положения, на основе которых можно производить анализ многообразных движений человеческого тела. Двигательная функция мышцы далеко невсегда определяется ее положением и прикреплением. Мышцы необходимо рассматривать в связи с теми двигательными актами, в осуществлении которых они участвуют, вступая при этом в сложные, изменчивые взаимоотношения. Если работа отдельных звеньев двигательного аппарата подчиняется законам механики, то сами движения тела человека обусловлены биологическими или социальными факторами. Координация движений осуществляется путем нервной регуляции на различных уровнях центральной нервной системы - спинномозговыми, стволовыми, подкорковыми и корковыми центрами.

В процессе индивидуального развития вырабатываются определенные схемы движений, имеющих то или иное биологическое значение, как-то: передвижение, ориентировка, захватывание пищи и т.д. Двигательный аппарат человека отличается тем, что он может быть использован и для осуществления произвольных движений, не укладывающихся в эти схемы. Бесконечное разнообразие трудовых процессов, речевых и эмоциональных движений зависит от практически неограниченной свободы в использовании органов движения, которая обеспечивается сложными механизмами нервного управления мышц.

 


Дата добавления: 2015-07-11; просмотров: 132 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.009 сек.)