Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Поликонденсация



Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам. При поликонденсации протекает ряд кинетически не связанных бимолекулярных реакций. Особенности реакции поликонденсации:

Таблица 1. Типы соединений, образующихся при поликонденсации, в зависимости от природы функциональных групп

Первая функциональная группа (а) Вторая функциональная группа (b) Исходное вещество Тип образующегося соединения
-H H- Углеводород Полиуглеводород
-H Сl- Галогенпроизводное То же
-Вr Вr- Дигалогенпроизводное "
-ОН НО- Многоатомный спирт Полиэфир простой
-OH HOOC- Оксикислота Полиэфир сложный
-OH ROOC- Эфир оксикислоты То же
-NH2 НООС- Аминокислота Полиамид
-NH2 ROOC- Эфир аминокислоты То же
-NH2 СlОC- Хлорангидрид аминокислоты "

 

В процессе поликонденсации могут участвовать как однородные, так и разнородные молекулы. В общем виде эти реакции изображены следующими схемами:

где а и b - функциональные группы.

Свойства продукта, образующегося при поликонденсации, определяются функциональностью мономера, т.е. числом реакционноспособных функциональных групп. Реакция поликонденсации может быть использована для синтеза различных классов как карбоцепных, так и гетероцепных полимеров.

При поликонденсации бифункциональных соединений образуются линейные полимеры (табл. 1). Если функциональность мономера больше двух, то образуются разветвленные и трехмерные полимеры. Количество функциональных групп в макромолекуле при этом возрастает по мере углубления реакции. Для синтеза волокнообразующих полимеров наибольший интерес представляют бифункциональные соединения.

В зависимости от природы функциональных групп и строения образующегося полимера в реакции поликонденсации могут быть представлены различные классы химических реакций: полиэтерификация, полиангидридизация, полиамидирование и т.д. В табл. 1 Приложения приведены примеры различных типов соединений, образующихся при поликонденсации.

В зависимости от строения исходных веществ и способа проведения реакции возможны два варианта поликонденсационных процессов: равновесная и неравновесная поликонденсация.

Равновесной поликонденсацией называется такой процесс синтеза полимера, который характеризуется небольшими значениями констант скоростей и обратимым характером превращений. Поликонденсация - многостадийный процесс, каждая ступень которого является элементарной реакцией взаимодействия функциональных групп. В качестве постулата принято считать, что реакционная способность концевых функциональных групп не изменяется при росте полимерной цепи. Процесс равновесной поликонденсации представляет собой сложную систему реакций обмена, синтеза и деструкции, которую называют поликонденсационным равновесием. В общем виде реакции поликонденсации могут быть представлены как реакции функциональных групп, например:

~СООН + НO~ ↔~СОО~ + Н2O.

Соответственно константа равновесия выражается следующим образом:

Kn p = [COOH][H2O]
 
[COOH][OH]

Значение Кп p постоянно на всех стадиях поликонденсации, т.е. не зависит от степени полимеризации. Так, для синтеза полиэтилентерефталата при 280°С Кп р = 4,9, а полигексаметиленадипамида при 260°С Кп р = 305.

Факторы, влияющие на молекулярную массу и полидисперсность поликонденсационных полимеров. Суммарную скорость процесса поликонденсации можно оценить, определяя количество функциональных групп в пробах, отобранных из реакционной смеси через различные промежутки времени. Результат выражается степенью завершенности реакции Х м, которая определяется как доля функциональных групп, прореагировавших к моменту отбора пробы.

Если N 0 - начальное число функциональных групп одного вида, a Nt - число групп, не прореагировавших к моменту отбора пробы t, то

XM =(N0-Nt)/N0

Для получения полимеров с максимальной молекулярной массой берут мономеры в строго эквивалентных количествах. Каждая функциональная группа одного исходного вещества может при поликонденсации реагировать с функциональной группой другого исходного вещества.

Вместе с тем реакция синтеза полиамидов или сложных полиэфиров обычно катализируется Н+. Процесс протонирования реагирующей карбоксильной группы может быть осуществлен за счет второй группы НООС-. Поэтому скорость реакции между диамином и дикислотой или диолом и дикислотой может быть описана соответственно как

При условии эквивалентности реагирующих функциональных групп и принимая во внимание, что [NH2] = [ОН] = [НООС] = С, имеем

-dC/dt=KnC3,

где С - концентрация функциональных групп; Кп - константа скорости реакции.

После интегрирования при t = 0 и С = С 0 имеем

2Knt=1/Ct2-1/C02.

 

Принципиальное отличие цепной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что тоже, от конверсии мономера, которая определяет только выход полимера.

 


Дата добавления: 2015-07-10; просмотров: 155 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.007 сек.)