Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Движение электрона в кулоновском поле

Читайте также:
  1. B — Реакция на происходящее (движение и сигналы)
  2. B — Реакция на происходящее (движение и сигналы)
  3. B — Реакция на происходящее (движение и сигналы)
  4. B — Реакция на происходящее (движение и сигналы)
  5. C — Реакция на происходящее (движение и сигналы)
  6. C — Реакция на происходящее (движение и сигналы)
  7. C — Реакция на происходящее (движение и сигналы)

Одной из простейших задач атомной механики является задача о движении электрона в кулоновском поле ядра, имеющая большой практический интерес, так как решение ее дает не только теорию спектра водорода, но и приближенную теорию спектров атомов с одним валентным электроном (водородоподобных атомов), например атома натрия.

В атоме водорода электрон находится в кулоновском электростатическом поле ядра (протона), так что потенциальная энергия U(x,y,z) равна

, (22)

где r есть расстояние электрона от ядра, -заряд электрона, -заряд ядра.

Уравнение Шрёдингера в этом случае имеет вид

. (23)

Задача состоит в отыскании таких значений Е, для которых уравнение (23) допускает решение, непрерывное во всем пространстве и удовлетворяющее условию нормировки

. (24)

Запишем уравнение (23) в сферической системе координат с началом в ядре, которое предполагается неподвижным:

(25)

и будем искать решение в виде

. (26)

Принимая во внимание дифференциальное уравнение для сферических функций :

получаем:

. (27)

Введем в качестве единицы длины величину

,

в качестве единицы энергии — величину

.

Полагая

, < 0. (28)

Перепишем уравнение (27) в виде

,

. (29)

С помощью подстановки

, (30)

,

,

,

,

,

уравнение (29) приводится к виду

. (31)

Введя в качестве независимой переменной величину

, (32)

получим вместо (31) уравнение

(33′)

или

,

или

, (33)

где

(34)

совпадает с рассмотренным нами в §2.5 уравнением (21).

Найденные там собственные значения оказались равными

,

а собственные функции (определенные с точностью до постоянного множителя) через обобщенные полиномы Чебышёва-Лагерра :

. (35)

Учитывая, что , получаем:

.

Целое число п называется главным квантовым числом, пr - радиальным квантовым числом, l — азимутальным или орбитальным квантовым числом.

Заменяя λ его выражением согласно формулам (34) и (28), получаем квантованные значения энергии

(36)

. (37)

Они зависят только от главного квантового числа п.

Перейдем теперь к определению собственных функций водородоподобного атома. Для этого в силу формулы (26) нам достаточно найти радиальные функции χ (ρ). Пользуясь формулами (30), (32), (34), (35), (36), можем написать

, (38)

где Ап — нормировочный множитель, определяемый из условия

. (39)

Вычисляя Ап, получаем следующее выражение для нормированных радиальных функций:

. (40)

В силу формул (26) и (19) нормированные собственные функции имеют вид

,

где - нормировочный коэффициент, определяемый формулой (40).

Число т (т = 0, ±1, ±2,..., ±l) называется магнитным квантовым числом. Так как пr всегда неотрицательно (nr = 0, 1, 2,...), то при данном п в силу формулы

п = пr + l + 1

квантовое число l не может быть больше п -1 (l = 0, 1, 2,..., п -1). Поэтому при определенном значении главного квантового числа п число l может принимать n значений: l = 0, 1,..., n -1, а каждому значению l соответствует (2 l + 1) значений т. Отсюда следует, что заданному значению энергии Еп, соответствует n 2 различных собственных функций. Таким образом, каждый уровень энергии имеет вырождение кратности п 2.

Найденный нами дискретный спектр отрицательных собственных значений энергии Еп состоит из бесконечного множества чисел с точкой сгущения в нуле.

 


Дата добавления: 2015-07-08; просмотров: 282 | Нарушение авторских прав


Читайте в этой же книге: Рекуррентные формулы | Норма полиномов Лежандра | Присоединенные функции Лежандра | Сферические функции | Ортогональность системы сферических функций | Уравнение Чебышева- Эрмита | Функции Чебышева-Эрмита | Обобщенные полиномы Чебышева-Лагерра | Уравнение Шредингера | Гармонический осциллятор |
<== предыдущая страница | следующая страница ==>
Ротатор| Цилиндрические функции

mybiblioteka.su - 2015-2024 год. (0.008 сек.)