|
а
Рис. 6.16. Типовые схемы контроля симметричности: а — сквозного отверстия; б — шпоночного паза
Контроль отклонения от симметрии осуществляют универсальными измерительными средствами. На рис. 6.16, а показано измерение отклонения от симметрии сквозного отверстия, а на рис. 6.16, б — шпоночного паза.
За отклонение от симметрии берется полуразность показаний прибора в / и II положениях.
6.3. Диагностирование составных частей двигателей
Рис. 6.17. Схема расходомера КИ-4887-1: 1 — 3 — манометры; 4 — входной патрубок; 5, 6 — дроссельные краны соответственно входной и выходной; |
Состояние сопряжения поршень — поршневые кольца — гильза цилиндра можно оценить по количеству газов, прорывающихся в картер. Этот диагностический параметр измеряют при помощи расходомера КИ-4887-1 (рис. 6.17), предварительно прогрев двигатель до нормального теплового режима. Прибор имеет трубу с входным 5 и выходным б дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют к вакуумной установке. В результате разрежения в эжекторе картер- ные газы поступают в расходомер. Устанавливая при помощи кранов 5 и (5 жидкость в столбиках манометров 2 и 3 на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления Ah устанавливают по манометру 1 одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным (л/мин): 7 — эжектор
ЗМЗ-51-11.................................................
ЗИЛ-130.....................................................
* В скобках приведены предельные значения
Мощность и экономичность двигателя зависят от компрессии в цилиндрах. Компрессия снижается при значительном износе или поломке деталей цилиндропоршневой группы. Перед измерением компрессии промывают воздушный фильтр, контролируют фазы газораспределения и регулируют тепловые зазоры клапанов.
Перед проверкой компрессии в цилиндрах карбюраторного двигателя его прогревают до нормального теплового режима, останавливают, полностью открывают дроссельную и воздушную заслонки карбюратора, отсоединяют провода от свечей зажигания, очищают и продувают сжатым воздухом углубления для свечей в головках цилиндров и выворачивают все свечи зажигания.
Компрессию оценивают по давлению в камерах сгорания двигателя при такте сжатия и замеряют компрессометрами моделей 179 (для карбюраторных двигателей) или КН 1125 (для дизельных двигателей).
Перед проверкой компрессии в цилиндрах дизельного двигателя его прогревают до нормального теплового режима, отсоединяют топливопровод высокого давления от форсунки проверяемого цилиндра и надевают на конец топливопровода шланг для отвода топлива в специальный сосуд, снимают форсунку и вставляют в отверстие для нее наконечник компрессометра. Компрессию замеряют при частоте вращения коленчатого вала 450...550 мин-1.
Техническое состояние цилиндропоршневой группы также определяют по утечке воздуха, замеряемой прибором К-69М:
Двигатель...................................................... 3M3-53-11 ЗИЛ-130
22...25 (110) 22...28 (120) |
Двигатель: |
Предельные значения утечки воздуха, %:
|
при положении поршня в в. м. т.»»» вн. м. т.
25 15 |
40 25 |
Разность утечек воздуха, %..................
|
Если значение утечки воздуха при положении поршня в в. м. т. больше предельного, следует проверить стетоскопом утечку воздуха через клапаны и убедиться в отсутствии утечки воздуха через прокладку головки цилиндров двигателя. Если при смачивании прокладки головки цилиндров мыльной водой на ней или в наливной горловине радиатора появляются пузырьки воздуха, это свидетельствует о слабой затяжке гаек головки цилиндров или о начале разрушения прокладки. Возможно наличие трещины в блоке цилиндров или камере сгорания.
При отсутствии указанных дефектов и больших значениях утечки воздуха при положении поршня в в.м.т. следует продолжить замеры при положении поршня в н. м. т. Результаты замеров следует сравнить с предельными значениями. Если показания прибо-
б
Рис. 6.18. Стетоскопы: а — стержневой; б — трубчатый; 1 — слуховая шайба; 2 — стержень; 3 — наконечник; 4 — слуховой стержень
ра нестабильны, а утечки воздуха велики, это свидетельствует о неисправностях механизма газораспределения.
Стуки двигателя прослушивают при помощи стержневого (рис. 6.18, а) или трубчатого (рис. 6.18, б) стетоскопов, прикасаясь концом стержня 2 или 4 к зонам прослушивания на двигателе.
Состояние коренных подшипников коленчатого вала определяют, прослушивая нижнюю часть блока цилиндров при резком открытии и закрытии дроссельной заслонки. Изношенные коренные подшипники издают сильный глухой стук низкого тона, усиливающийся при резком увеличении частоты вращения коленчатого вала.
Состояние шатунных подшипников коленчатого вала определяют аналогично. Изношенные шатунные подшипники издают стук среднего тона, по характеру схожий со стуком коренных подшипников, но менее сильный и более звонкий, исчезающий при выключении свечи зажигания или форсунки прослушиваемого цилиндра.
Работу сопряжения поршень — гильза цилиндра прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю. Появление звука, напоминающего дрожащий звук колокола, усиливающегося с увеличением нагрузки на двигатель и уменьшающегося по мере прогрева двигателя, указывает на возможное увеличение зазора между поршнем и гильзой цилиндра, изгиб шатуна, перекос оси шатунной шейки или поршневого пальца, особенно, если у двигателя наблюдается повышенный расход топлива и масла. Скрипы и шорохи в сопряжении поршень — гильза цилиндра свидетельствуют о начинающемся заедании в этом сопряжении, вызванном малым зазором или недостаточным смазыванием.
Состояние сопряжения поршневой палец — втулка верхней головки шатуна проверяют, прослушивая верхнюю часть блока цилиндров при малой частоте вращения коленчатого вала с резким
4'
Рис. 6.19. Устройство КИ-11140:
1 — индикатор; 2 — основание; 3 — наконечник; 4 — трубка
переходом на среднюю. Резкий металлический стук, напоминающий частые удары молотком по наковальне и пропадающий при отключении свечей зажигания или форсунок, указывает на увеличение зазора между поршневым пальцем и втулкой, недостаточное смазывание или чрезмерно большое опережение начала подачи топлива.
Сопряжение поршневое кольцо — канавка поршня проверяют на уровне н. м. т. хода поршня при средней частоте вращения коленчатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе колец.
Еще одним эффективным методом проверки состояния кривошипно-шатунного механизма является измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике. Проверку проводят при неработающем двигателе при помощи устройства КИ-11140 (рис. 6.19).
Наконечник 3 с трубкой 4 устройства устанавливают на место снятой свечи зажигания или форсунки проверяемого цилиндра. К основанию 2 через штуцер присоединяют компрессорно-вакуумную установку.
Поршень устанавливают за 0,5... 1,0 мм от в. м. т. на такте сжатия, стопорят коленчатый вал от проворачивания и с помощью компрессорно-вакуумной установки попеременно создают в цилиндре давление 200 кПа и разряжение 60 кПа. При этом поршень, поднимаясь и опускаясь, выбирает зазоры, сумма которых фиксируется индикатором 7.
ГЛАВА 7. КОМПЛЕКТОВАНИЕ ДЕТАЛЕЙ И СБОРКА АГРЕГАТОВ
7.1. Комплектование деталей
Комплектование — часть производственного процесса, которая выполняется перед сборкой и предназначена для обеспечения непрерывности и повышения производительности процесса сборки, для ритмичного выпуска изделий требуемого и стабильного уровня качества и снижения трудоемкости и стоимости сборочных работ.
При комплектовании выполняют следующий комплекс работ: накопление, учет и хранение новых, восстановленных и годных без ремонта деталей, сборочных единиц и комплектующих изделий, подачу заявок на недостающие составные части;
подбор составных частей сборочного комплекта (группы деталей, сборочных единиц и комплектующих изделий, составляющих то или иное изделие) по номенклатуре и количеству;
подбор сопряженных деталей по ремонтным размерам, размерным и массовым группам;
подбор и пригонку деталей в отдельных соединениях; доставку сборочных комплектов к постам сборки до начала выполнения сборочных работ.
Различают три способа комплектования деталей: штучный, групповой и смешанный.
При штучном комплектовании к базовой детали подбирают сопрягаемую деталь исходя из величины зазора или натяга, допускаемого техническими условиями. Например, к блоку цилиндров подбирают поршни. При штучном подборе затрачивается много времени. Этот способ применяют на небольших универсальных ремонтных предприятиях.
При групповом комплектовании поле допусков размеров обеих сопрягаемых деталей разбивают на несколько интервалов, а детали по результатам измерений сортируют в соответствии с этими интервалами на размерные группы. Размерные группы сопрягаемых деталей маркируют цифрами, буквами или красками. Групповое комплектование применяют для подбора ответственных деталей (гильз, поршней, поршневых пальцев, коленчатых валов, плунжерных пар).
При смешанном комплектовании деталей используют оба способа. Ответственные детали комплектуют групповым, а менее ответственные — штучным способом.
Способ комплектования деталей находится в тесной связи со способом обеспечения точности при сборке.
Наряду с тремя основными способами комплектования во избежание несбалансированности некоторые детали подбирают по массе (например, поршни двигателей внутреннего сгорания). Иногда комплектование сопровождается слесарно-подгоночными операциями.
Крупногабаритные детали и сборочные единицы (блок и головка цилиндров, картеры, детали кабины, кузова, рамы и др.) целесообразно доставлять на посты сборки, минуя комплектовочный участок.
При комплектовании на каждое собираемое изделие заполняется комплектовочная карта, в которой указываются: номера цеха, участка, рабочего места, где выполняются сборочные операции; обозначения деталей, сборочных единиц, материалов и комплектующих изделий; номера цехов, участков, складов, откуда поступают комплектующие единицы; количество деталей, материалов и сборочных единиц, подаваемых на рабочие места сборки за смену; нормы расхода материалов и комплектующих изделий и др. Кодированная запись указанной информации позволяет применять вычислительную технику при ее обработке.
На комплектовочном участке имеются столы для контроля деталей, стеллажи и шкафы для хранения инструмента и приспособлений, слесарные верстаки, прессы и т.д. Рабочие места рекомендуется специализировать по наименованиям агрегатов, узлов. На них должны быть соответствующие чертежи, таблицы посадок деталей, каталоги деталей, входящих в узлы, обязательно наличие местного освещения.
7.2. Методы обеспечения точности сборки
Точность сборки — свойство технологического процесса сборки изделия обеспечивать соответствие действительных значений параметров изделия значениям, заданным в технической документации. Точность сборки зависит от точности размеров и формы, шероховатости сопрягаемых поверхностей деталей, их взаимного положения при сборке, технического состояния средств технологического оснащения, деформации системы «оборудование — приспособление — инструмент — изделие» в момент выполнения сборки и т. п. Точность сборки аналитически может быть определена с помощью сборочных размерных цепей.
Размерная цепь представляет собой замкнутый контур взаимосвязанных размеров, обусловливающих их численные значения и допуски. Размерная цепь состоит из составляющих, исходного (замыкающего) и других видов звеньев.
Составляющее звено — звено размерной цепи, изменение которого вызывает изменение исходного (замыкающего) звена. Составляющие звенья обозначаются прописными буквами русского алфавита с цифровыми индексами (например, Аь А2 или Бь Б2).
Исходное (замыкающее) звено — звено, получаемое в цепи последним в результате решения поставленной задачи при изготовлении или ремонте. Оно обозначается той же буквой алфавита с индексом I (например, Az или Bz).
Компенсирующее звено — звено, изменением размера которого достигается требуемая точность замыкающего звена. Компенсирующее звено обозначается той же буквой алфавита с соответствующим цифровым индексом и буквой к (например, А^ или Б7к).
По характеру воздействия на замыкающее звено составляющие звенья могут быть увеличивающими или уменьшающими, т. е. при их увеличении замыкающее звено увеличивается или уменьшается. Увеличивающие звенья могут обозначаться стрелками, направленными вправо — А, уменьшающие — стрелками влево — А.
Требуемая точность сборки изделий достигается одним из пяти методов: полной, неполной и групповой взаимозаменяемости, регулирования и пригонки.
Метод полной взаимозаменяемости — метод, при котором требуемая точность сборки достигается путем соединения деталей без их выбора, подбора или изменения размеров. Применение метода полной взаимозаменяемости целесообразно при сборке соединений, состоящих из небольшого количества деталей, так как увеличение числа деталей требует обработки сопряженных поверхностей с меньшими допусками, что не всегда технически достижимо и экономически целесообразно.
Метод неполной взаимозаменяемости — метод, при котором требуемая точность сборки достигается не у всех соединений при сопряжении деталей без их выбора, подбора или изменения размеров, а у заранее обусловленной их части, т. е. определенный процент (или доли процента) соединений не удовлетворяет требованиям точности сборки и требует разборки и повторной сборки. Метод неполной взаимозаменяемости целесообразен, если дополнительные затраты на выполнение разборочно-сборочных работ меньше затрат на изготовление сопрягаемых деталей с более узкими допусками, обеспечивающими получение требуемой точности сборки у всех соединений.
Метод групповой взаимозаменяемости (так называемый селективный метод) — метод, при котором требуемая точность сборки достигается путем соединения деталей, принадлежащих к одной из размерных групп, на которые они предварительно рассортированы. В пределах каждой группы требуемая точность сборки достигается методом полной взаимозаменяемости. Данный метод обеспечивает высокую точность сборки, однако сопряжен с дополнительной операцией сортировки деталей на размерные группы, необходимостью хранения запасов деталей всех размерных групп и невозможностью использования части деталей, когда сопрягаемые детали неравномерно распределяются по размерным группам.
Метод регулирования —- метод, при котором требуемая точность сборки достигается путем изменения размера одной из деталей (или группы деталей) соединения, называемой компенсатором, без снятия слоя материала. Например, требуемая точность осевого зазора (натяга) соединений с коническими подшипниками качения (дифференциал, главная передача, механизм рулевого управления и др.) обеспечивается изменением толщины неподвижного компенсатора, а точность зазора между торцом клапана и болтом толкателя или коромысла (клапаном-коромыслом) достигается путем изменения положения подвижного компенсатора — регулировочного болта — в осевом направлении.
Метод пригонки — метод, при котором требуемая точность сборки достигается путем изменения размера компенсатора со снятием слоя материала. Например, требуемая точность посадки плунжера в гильзе или клапана в корпусе форсунки, а также герметичность в соединении клапан — гнездо головки цилиндров достигается путем притирки.
Сборочные размерные цепи рассчитывают одним из двух методов: максимума—минимума или вероятностным.
При расчете методом максимума—минимума номинальный размер замыкающего звена размерной цепи
m-1
= Z 5/Л/,
/=1
где £ — передаточное отношение (для цепей с параллельными звеньями £ = 1 — для увеличивающих звеньев; § = —1 — для уменьшающих звеньев); т — число звеньев размерной цепи; At — номинальный размер /-го составляющего звена.
Допуск замыкающего звена при расчете методом максимума—минимума определяют по формуле
m-1
в* =,
/=1
где 5Л. — допуск /-го составляющего звена.
7.3. Виды сборки
Виды сборки изделий классифицируются по следующим основным признакам: объект сборки, последовательность сборки, точность сборки, уровень механизации и автоматизации процесса сборки, подвижность изделия при сборке, организация производства.
По объекту сборки сборка подразделяется на узловую и общую. Примеры узловой сборки — сборка поршня с шатуном и кольцами, коленчатого вала с маховиком и сцеплением, головки цилиндров с клапанными механизмами, жидкостного и масляного насосов; примеры общей сборки — сборка агрегатов из узлов, сборка автомобиля из агрегатов и узлов.
По последовательности сборки выделяют последовательную (сборочные операции выполняются одна за другой), параллельную (операции выполняются одновременно) и последо- вательно-параллельную (операции выполняются и одна за другой, и одновременно).
Поуровню механизации и автоматизации процесса сборку разделяют на ручную, механизированную, автоматизированную, автоматическую.
По состоянию объекта сборки выделяют стационарную (неподвижную) и подвижную сборку с непрерывным или периодическим перемещением собираемого изделия между рабочими местами сборки.
По организации производства выделяют типовую поточную, групповую (поточную и непоточную) и единичную как наиболее распространенный вид организации сборки на существующих ремонтных предприятиях.
7.4. Виды соединений и технология их сборки
При сборке выделяют следующие группы и виды соединений: по сохранению целостности при разборке — разъемные и неразъемные; по возможности относительного перемещения составных частей — подвижные и неподвижные; по методу образования — резьбовые, прессовые, шлицевые, шпоночные, сварные, клепаные, комбинированные и др.; по форме сопрягаемых поверхностей — цилиндрические, плоские, конические, винтовые, профильные и др. Соединения, содержащие в себе несколько признаков, обозначаются соответствующим сочетанием терминов, например неподвижные разъемные резьбовые соединения, подвижные неразъемные профильные соединения.
Наиболее распространенными соединениями в конструкции автомобилей являются: разъемные подвижные (поршень — цилиндр, вал — подшипник скольжения, плунжер — гильза); зубчатые и шлицевые; разъемные неподвижные (резьбовые, прессовые и шпоночные); неразъемные неподвижные (сварные, паяные, клепаные, клееные); неразъемные подвижные — радиальные шариковые подшипники качения.
Сборка резьбовых соединений. При сборке резьбовых соединений должны быть обеспечены:
соосность осей болтов, шпилек, винтов с резьбовыми отверстиями и необходимая плотность посадки в резьбе;
отсутствие перекосов торца гайки или головки болта относительно поверхности сопрягаемой детали, так как перекос является основной причиной обрыва винтов и шпилек;
соблюдение очередности и постоянство усилий затяжки крепежных деталей в групповых резьбовых соединениях.
Последнее означает, что затяжка гаек (болтов) производится в определенной последовательности (рис. 7.1). Их затягивают крест- накрест в несколько приемов — сначала неполным моментом, а затем окончательным, указанным в нормативно-технической документации. Контроль момента затяжки резьбовых соединений осуществляют динамометрическими ключами по степени изгиба (рис. 7.2) или кручения стержня ключа либо с помощью предельных муфт, встраиваемых в резьбозавертывающие машины (установки).
Сборка прессовых соединений. Качество сборки прессовых соединений формируется под воздействием следующих факторов: значения натяга, материала сопрягаемых деталей, геометрических размеров, формы и шероховатости поверхностей, соосности деталей и прилагаемого усилия запрессовывания, наличия смазки и др.
Применение смазочного материала уменьшает требуемое усилие запрессовки и предохраняет сопрягаемые поверхности от за- диров. Качество сборки прессовых соединений определяется также точностью центрирования сопрягаемых деталей (с помощью приспособлений и оправок).
а — двигателей 3M3-53; б — двигателя ЗИЛ-130; в — двигателя ЗИЛ-645
Повышение прочности неподвижных соединений с натягом в 1,5...2,5 раза обеспечивается применением сборки с термовоздействием — нагревом охватывающей и (или) охлаждением охватываемой детали. При этом образуется необходимый сборочный зазор и не требуется приложение осевой силы. Нагрев деталей осуществляется в масляных ваннах, электропечах, индукционных установках и др. Для охлаждения деталей применяют жидкий азот, сухой лед (твердую углекислоту) в смеси с ацетоном, бензином или спиртом.
Сборка соединений с подшипниками качения. При запрессовке подшипника качения размер его колец изменяется: внутреннее коль-
Рис. 7.1. Последовательность затяжки гаек (болтов) крепления головки цилиндров: |
а |
в |
. цо увеличивается, а наруж-
ное уменьшается. Эти изменения вызывают уменьшение диаметрального зазора между рабочими поверхностями колец и шариков. Внутреннее кольцо подшипника, сопряженное с цапфой вала, должно иметь посадку с натягом, а наружное — с небольшим зазором так, чтобы кольцо имело возможность во время работы незначительно провертываться. |
О о W |
1 ^ \>А
/
ZL
Вид А Рис. 7.2. Динамометрический ключ: 1 — держатель накидной головки; 2 — стрелка; 3 — упругий стержень; 4 — шкала; 5 — рукоятка |
При установке в сборочной единице двух или нескольких подшипников необходимо уделять внимание соосности посадочных поверхностей в корпусных деталях. То же касается и шеек валов. Несоблюдение этого условия может привести к перекосам подшипников и заклиниванию шариков.
При запрессовке подшипников качения с помощью оправок необходимо, чтобы усилие запрессовки передавалось непосредственно на торец соответствующего кольца: внутреннего — при напрес- совке на вал, наружного — при запрессовке в корпус и на оба торца колец, если подшипники одновременно напрессовываются на вал и входят в корпус. Нагрев подшипников в масляной ванне до 100 °С при установке на вал заметно уменьшает осевое усилие для запрессовки. Целесообразен также нагрев корпусной детали.
Передний Задний ход ход -Е 3- -Е Э- т У | Схема смещения шестерен для исправления контакта | Передний Задний ход ход -E 3- -E Э- ▼ У | Схема смещения шестерен для исправления контакта | |
| A rtb ■ Mlw i ^L i |
|
| А |
ш |
|
| Ш | Зуб нарезан неправильно или оси шестерен направлены неверно. Брак неисправимый |
ш |
| h r |
| Зуб нарезан неправильно. Брак неисправимый |
Рис. 7.3. Регулировка контактов зубьев конических шестерен главной
передачи
Сплошной стрелкой показано направление смещения шестерен для исправления контакта. Если при этом боковой зазор получается чрезмерно большим или малым, то необходимо сместить другую шестерню, как показано прерывистой
стрелкой
Регулировка радиального зазора в коническом роликовом подшипнике производится смещением наружного или внутреннего кольца в осевом направлении регулировочным винтом или гайкой либо путем подбора соответствующего комплекса прокладок. Контроль заданного предварительного натяга после сборки узла осуществляют по моменту, необходимому для прокручивания одной из сопряженных деталей относительно неподвижной детали при отсутствии осевого люфта в подшипниковых соединениях.
Срок службы подшипников качения зависит в значительной мере от степени предохранения их от грязи и пыли. Поэтому после сборки устанавливают прокладки, задерживающие смазку и предохраняющие подшипник от попадания в рабочую зону пыли и влаги.
Сборка зубчатых передач. Сборка цилиндрических зубчатых передач осуществляется методами полной или неполной взаимозаменяемости. Перед сборкой зубчатой пары на специальном приспособлении определяют боковой зазор между зубьями для обеспечения плавности работы пары, а при необходимости подбирают пару.
Для правильного зацепления зубчатых цилиндрических колес необходимо, чтобы оси валов лежали в одной плоскости и были параллельны. Их выверка производится регулированием положения гнезд под подшипники в корпусе. После установки зубчатые колеса проверяют по зазору, зацеплению и контакту.
При сборке конической пары редуктора заключительной операцией является регулировка зацепления путем осевого перемещения ведущей шестерни (вперед-назад) и (или) ведомого колеса (вправо-влево). Это достигается перемещением части регулировочных прокладок с одной стороны на другую. Качество зацепления оценивается размерами, формой и положением пятна контакта на зубьях (рис. 7.3), значением бокового зазора между зубьями и уровнем шума на специальных стендах, оборудованных шумоизмерительной аппаратурой.
7.5. Контроль качества сборки
В процессе узловой и общей сборки выполняют комплекс контрольных операций — проверок:
комплектности деталей и сборочных единиц; точности посадок и взаимного расположения сопряженных деталей и сборочных единиц;
использования одноименных размерных групп сопряженных деталей при сборке методом групповой взаимозаменяемости;
выполнения технологических требований по сборке, регулировке, приработке и испытанию изделий;
герметичности соединений, в том числе качества притирки клапанов;
отсутствия прокладок и сальников, бывших в эксплуатации;
смазки деталей сборочных единиц.
Производится проверка технологических параметров и определение функциональных показателей собранных изделий (развиваемая мощность и удельный расход топлива, напор и подача масляного насоса, электрические параметры генератора и др.).
Контроль сборки осуществляется с применением соответствующих средств измерений, которые выбирают с учетом конструктивных особенностей изделия, метрологических характеристик, а также себестоимости выполнения контрольной операции. В качестве средств измерения используют универсальные штангенинст- рументы, микрометрические и индикаторные инструменты, электрические и пневматические приборы и различные специальные контрольные приборы, приспособления, стенды и установки. Обеспечение требуемого уровня качества отремонтированных изделий невозможно без эффективного функционирования службы технического контроля как неотъемлемой составной части технологических процессов.
В зависимости от стабильности соблюдения качества собранных изделий применяется выборочный или сплошной контроль. Операции технического контроля разрабатываются совместно с операциями технологического процесса сборки изделий, которые формируют и определяют заданное качество, а также обеспечивают получение информации для регулирования технологического процесса и предупреждения брака.
Дата добавления: 2015-08-27; просмотров: 52 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |