|
, , .
9. Вычислить ; ; ; .
10. Дан ряд . Найти сумму первых четырёх слагаемых. Исследовать сходимость ряда.
11. Найти область сходимости степенного ряда . Исследовать поведение ряда на границах области. Найти приближённое значение суммы ряда при (с погрешностью не более 1%).
12. Разложить функцию в ряд Тейлора в окрестности точки . Указать область сходимости ряда. С помощью полученного разложения вычислить приближенно значение функции в точке , оставляя в разложении только 4 слагаемых. Оценить абсолютную и относительную погрешность, допущенную при этом вычислении.
13. Вычислить приближённо (с погрешностью не более 1%), используя разложение подынтегральной функции в ряд
14. Найти решение дифференциального уравнения аналитически и приближённо методом Эйлера с шагом в интервале . Сравнить полученные результаты.
15. Найти общее решение дифференциального уравнения .
16.Найти частное решение дифференциального уравнения .
17. Найти частное решение дифференциального уравнения .
ТР-2
Вариант 20.
1. Вычислить, используя подведение под знак дифференциала: .
2. Составить и вычислить какую-нибудь интегральную сумму при для . Найти точное значение этого интеграла по формуле Ньютона - Лейбница. Определить в процентах отличие полученной интегральной суммы от точного значения.
3. Вычислить по формуле Ньютона - Лейбница , используя замену .
4. Найти площадь, ограниченную линиями (используя стандартную формулу).
5. Найти площадь, ограниченную линией (используя стандартную формулу).
6. Кусок тонкой проволоки длины изогнут в форме квадрата и вращается вокруг оси, проходящей через его сторону, с угловой скоростью . Линейная плотность проволоки равна . Найти кинетическую энергию квадрата (составив самостоятельно соответствующий интеграл).
Необходимые физические формулы: , , где
кинетическая энергия, масса, длина, скорость, расстояние до оси вращения.
7. Определить, какие из данных интегралов являются несобственными и исследовать их сходимость.
; ; ; .
8. Изобразить числа на комплексной плоскости и записать их в показательной форме. Для каждого числа указать и в радианах и градусах.
, , .
9. Вычислить ; ; ; .
10. Дан ряд . Найти сумму первых четырёх слагаемых. Исследовать сходимость ряда.
11. Найти область сходимости степенного ряда . Исследовать поведение ряда на границах области. Найти приближённое значение суммы ряда при (с погрешностью не более 1%).
12. Разложить функцию в ряд Тейлора в окрестности точки . Указать область сходимости ряда. С помощью полученного разложения вычислить приближенно значение функции в точке , оставляя в разложении только 4 слагаемых. Оценить абсолютную и относительную погрешность, допущенную при этом вычислении.
13. Вычислить приближённо (с погрешностью не более 1%), используя разложение подынтегральной функции в ряд.
14. Найти решение дифференциального уравнения аналитически и приближённо методом Эйлера с шагом в интервале . Сравнить полученные результаты.
15. Найти общее решение дифференциального уравнения .
16.Найти частное решение дифференциального уравнения .
17. Найти частное решение дифференциального уравнения .
Дата добавления: 2015-10-21; просмотров: 19 | Нарушение авторских прав
<== предыдущая лекция | | | следующая лекция ==> |