Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1.1.1. Этапы развития и становления естествознания 8 страница



Очень хороший пример дополнительности восприятия художником и передаче его в картинах приводит Б. Раушенбах [155]. При изображении, например, комнаты один считает важным стены и точно передает их вид, пренебрегая полом. Другой изобразит пол таким, как он видит, неумолимо искажая передачу стен. Можно по-разному расставлять акценты. Выбор того или иного варианта - дело восприятия и целей самого художника. Поэтому слова художников «я так вижу» имеют и объективный физический смысл: для одного важна вертикаль (стены), для другого пол (горизонталь). А вместе - не получается! Если он хочет правильно нарисовать пол, то «наврет» в изображении стен, а другой, которому важны стены, обязательно «наврет» в изображении пола. Каждый из них то, что для него важнее, передает лучше, «правильнее», пренебрегая другим. Как отмечал Б. Раушенбах: «Один передает безупречно одно, другой - другое, и получаются разные картины, и все они одинаково правильны и одинаково неправильны, и это справедливо». Заметим, кстати, что и действуют такие картины на нас по-разному, а ведь изображен на них один и тот же объект.

Можно привести еще одно соображение, связанное с этим всеобщим по существу законом дополнительности. Это «принцип равноправия», взаимоуважения участников любой дискуссии как реализация в гуманитарном плане идей Бора, когда каждый специалист не только уважает мнение другого, но и готов ограничить сферу своего мнения так, чтобы оно вписывалось в допустимые рамки, устанавливаемые извне другими специалистами. Применительно к научным подходам прогнозирования также можно отметить правильность принципа Бора: чем больше простота и шире область исследования, тем меньше точность и конкретность оценки. Интересную трактовку принципа дополнительности Бора на «бытовом», так сказать, уровне можно извлечь из эссе «Низкие истины» нашего известного кинорежиссера А. Кончаловского, который, возможно, и не слышал вовсе ни о каком Боре: «Человек, свободный внешне, должен быть чрезвычайно организован внутренне. Чем более человек организован, то есть внутренне не свободен, тем более свободное общество он создает. Каждый знает пределы отведенной ему свободы и не тяготится ее рамками. Самоограничение каждого - основа свободы всех. Очень часто приходится слышать о свободе русского человека. Да, русские действительно чрезвычайно свободны внутренне, и не удивительно, что компенсацией этому является отсутствие свободы внешней. Свободное общество они пока создать не в состоянии именно из-за неумения себя регламентировать. Каждый хочет быть свободен сам - всем стать свободными при этом заведомо не реально». Воистину, великий принцип Бора работает везде! Возвращаясь к физике, следует отметить, что современная теория строения атома также основана на квантово-механических представлениях. Паули сформулировал принцип, позволяющий объяснить расположение электронов по оболочкам. Классическое представление о планетарной модели атома и орбитах электронов было заменено волновой механикой и квантовой теорией элементарных процессов. Не будем здесь останавливаться на физических деталях проблемы строения вещества. Они достаточно сложны для общего понимания нашего курса, но мы должны согласиться, что они хорошо описывают природу микромира и его закономерности, и с ними, конечно, можно ознакомиться по соответствующим физическим курсам.



Однако сделаем одно общее замечание, касающееся упомянутых ранее свойств времени. Мы уже видели, что ни Ньютон, ни Эйнштейн в своих механиках и уравнениях движения формально, не получили «стрелы времени», и тем самым «разрешили» вольно двигаться во времени. Оказалось, что так тонко построенная квантовая механика, правильно отражающая события в микромире, также не вносит ничего нового в понимание процессов времени при движении квантовых частиц. Вероятно, это связано с тем, что в квантовое уравнение движения Шредингера волновая функция ψ(x) входит в квадрате, и имеет она реальный физический смысл тоже как |ψ(х)|2.

Кроме того согласно Эйнштейну гравитация проявляется в кривизне пространства-времени. Поэтому в квантовой теории гравитации Вселенной структура пространства-времени и его кривизна должны флуктуировать, поскольку квантовый мир никогда не находится в покое и вероятностен. Эти флуктуации не обнаруживаются в макромире, как уже говорилось, из-за малой величины постоянной Планка h, которая определяет область проявления квантово-механических свойств. В связи с этим последовательность событий, ход времени могут быть другими, чем в классической и релятивистской механике. Вполне вероятно, что мы их просто еще не открыли.

Результаты и идеи квантовой теории позволили построить новый раздел современной физики о движении заряженных микрочастиц, учитывая их квантово-механическую природу - квантовую электродинамику. Огромный вклад в эту физику внес нобелевский лауреат Р. Фейнман. По существу здесь рассматривается квантовая природа электромагнитного поля, и поскольку движение заряженных микрочастиц есть всеобщее явление природы, то квантовая электродинамика, можно сказать, описывает все явления физического мира, за исключением гравитации и радиоактивности. Эта теория проверялась в диапазоне размеров от ста диаметров Земли до одной сотой атомного ядра и точность предсказаний была поистине потрясающей. Например, вычисленное на ее основе значение собственного магнитного момента электрона совпадает с полученной из эксперимента величиной до 10-6. Чтобы оценить такую точность совпадения, как писал Р. Фейнман [195], надо измерить расстояние от Нью-Йорка до Лос-Анжелеса с точностью до толщины человеческого волоса!

Конечно, надо понимать, как указывает Фейнман, что этот расчет относится к отдельным электронам и частицам, и не забывать о том, что их много и для их описания требуется вероятностный подход. Мы не будем дальше касаться квантовой электродинамики не только потому, что изучаем не физику, а современное естествознание, но и из-за того, что это потребует большого объема объяснений, а любознательные и пытливые могут почерпнуть массу интересного о ней в замечательных научно-популярных книгах Фейнмана, как будто специально написанных для иллюстраций могущества и торжества физики в проблемах современного естествознания, и в его известных фейнмановских лекциях по физике. Это позволит оценить красоту (с научной точки зрения!) нашего прекрасного мира и вместе с тем получить физическое представление о мире, которое, по мнению Фейнмана, и составляет главную часть истинной культуры нашего времени. Однако уместно было бы привести и замечание редактора русского перевода фейнмановских лекций по физике Смородинского: «В действительности выучить формулы и уравнения, пожалуй, легче, чем следовать физическим рассуждениям и понимать логику явлений природы, которая часто выглядит очень странной». Впрочем об этом говорил и сам Фейнман в своей нобелевской лекции в 1965 году [195]. В заключение отметим, что физические явления в микромире починяются другим законам, чем в классической и релятивистской механике. Логично было бы спросить: а может ли проявляться тяготение в микромасштабах? На этот вопрос могла бы ответить квантовая теория гравитации, но ее пока нет, поскольку нет теории тяготения, согласованной с квантово-механическими принципами и принципом неопределенности.

top.document.title=document.title; chid="part-006"; chnum=6; chkurl(); doStart(sa); 1.6.

Физика Вселенной

Самое удивительное в природе
это - то, что мы можем ее понять.

А. Эйнштейн

Чем постижимей становится
Вселенная, тем она кажется
бессмысленней.

С. Вайнберг

Человек с давних пор интересовался устройством Вселенной. Звезды притягивали к себе наших предков, заставляли смотреть на них с удивлением и трепетом. Физика добилась больших успехов в изучении макроскопических и микроскопических свойств природы, однако, понимание и объяснение свойств Вселенной в целом происходило не так уверенно. Извечные вопросы, которые всегда волновали человечество, во многом не разрешены до сих пор. Как возникли звезды, планеты, вся Вселенная? Как развивалась эта Вселенная в прошлом, куда движется в настоящем и что ее ждет в будущем? На некоторые вопросы мы может ответить сейчас, другие ждут своего ответа. Но каждый шаг вперед ставит также и новые вопросы, раздвигая области неведомого. Сколько вещества во Вселенной? Существуют ли во Вселенной другие виды материи? Неизвестна природа странных объектов, излучающих фантастическое количество энергии из дальнего Космоса. И так далее...

Тем не менее, к настоящему времени сложились определенные научные представления о происхождении и эволюции Вселенной. Следует сразу отметить, что одним из основных затруднений при изучении астрономических и космологических событий является то, что над изучаемым объектом нельзя провести контрольного эксперимента. Мы можем наблюдать лишь естественный ход событий. Поэтому, можно сказать, поразительным является не безграничное разнообразие наблюдаемых астрономических событий, а возможность, анализируя эти явления, делать выводы относительно эволюции звезд и галактик на протяжении миллиардов лет.

Остановимся на физических основаниях космологии и астрофизики. Предметом космологии является изучение строения, происхождения и эволюции Вселенной как целого. Поэтому космология связана с общей теорией относительности (ОТО), поскольку во Вселенной приходится иметь дело с большими расстояниями, высокими скоростями и огромными массами.

Первая современная космологическая теория была предложена Эйнштейном в 1917 г. в качестве следствия его формулировки ОТО. Эйнштейн показал, что ОТО однозначно объясняет возможность существования статической вселенной, которая не изменяется со временем. Как мы сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех ОТО. Этот парадокс, по-видимому, был связан с тем, что еще из представлений ученых древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердила это. Однако уже в 1922 г. наш соотечественник А. Фридман показал, что из самих уравнений общей теории относительности следует нестационарность, т.е. развитие Вселенной Он утверждал, что искривленное пространство не должно быть стационарным, оно должно или расширяться, или сжиматься. И Эйнштейн вынужден был публично согласиться с выводами Фридмана. К сожалению, работы Фридмана, в частности его книга «Мир как пространство и время», были подвергнуты умолчанию вплоть до настоящего времени. Его работы не переиздавались и не пропагандировались, а автором теории расширяющейся Вселенной объявляется аббат Ж. Леметр, президент Папской академии наук в Ватикане. В значительной мере это связано с идеологической кампанией против «физического идеализма», развернутой в СССР в 30-50-е годы [239]. Стационарная, бесконечная в пространстве и времени Вселенная фигурировала и в философии Канта, Гегеля и Энгельса и была «узаконена» Марксистско-Ленинской философией. Все другие представления были объявлены ошибочными и лженаучными, в том числе и сама теория относительности А. Эйнштейна.

И действительно через какое-то время была создана теория расширяющейся Вселенной, причем она была подтверждена экспериментально. Из телескопических наблюдений звезд было установлено, что кроме нашей Галактики, звездного скопления в виде Млечного пути, существует огромное количество других галактик. Как мы уже указывали в главе 1.4 по красному смещению, точнее смещению световых лучей к красному концу видимого спектра, можно определить движение объекта относительно наблюдателя. В более общем виде - это так называемый эффект Доплера при распространении волны любой природы и движении источника этой волны относительно наблюдателя. Например, звуковой сигнал движущегося поезда относительно неподвижного наблюдателя на платформе будет выше, когда поезд приближается к нему, и ниже, когда удаляется. Так вот, экспериментально наблюдались и измерялись радиальные движения (от нас или к нам) отдельных звезд, а затем и галактик методом эффекта Доплера. Было установлено, что если звезда движется к нам, то спектральные линии смещаются к фиолетовому концу спектра, если от нас - то к красному концу.

При анализе изучения далекий галактик получился удивительный результат: у всех галактик наблюдается красное смещение! Поэтому можно считать, что они удаляются от нас. Причем величина этого красного смещения и, следовательно, скорость разбегания галактик больше для более удаленных галактик (что само по себе чрезвычайно удивительно и до сих пор причина этого не выяснена):

S = Hr (1.6.1)

где S - лучевая скорость, r - расстояние до объекта, Н - постоянная Хаббла, равная ~(3 - 5) ×10-18c-1 и названная так в честь Э. Хаббла, который в 1929 г. экспериментально подтвердил расширение Вселенной. Из Н можно определить возраст Вселенной (t ~ 1/H), который оценивается 10-20 миллиардов лет. В 1997 г. появились данные измерений расстояния до галактики Н100 в созвездии Девы, что Н больше, чем предполагалось, и тогда возраст вселенной составит 8 миллиардов лет. Кстати по данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.

Если все галактики удаляются от нас, то возникает вопрос: не занимаем ли мы особого положения во Вселенной? Простой физический опыт не дает оснований полагать, что это так. Предположим, что мы надуваем воздушный шарик, на поверхности которого равномерно нанесены пятнышки. По мере того как шарик будет раздуваться, наблюдателю, находящемуся на одном из пятнышек, будет казаться, что все другие пятнышки удаляются от него. Более того. ему будет казаться, что более далекие пятнышки удаляются значительно быстрее, чем те которые расположены близко. Такие же результаты получаются, естественно, при наблюдении из любого другого пятнышка. Таким образом, при однородном расширении будут увеличиваться все расстояния между пятнышками. Поэтому изменение красного смещения обычно трактуется как очевидное доказательство, что Вселенная расширяется. Так как расширение, по-видимому, происходит равномерно во все стороны, то «центра» Вселенной явно выделить нельзя. Естественно остается много вопросов: почему Вселенная расширяется, будет ли она расширяться дальше или сожмется? Конечна она или бесконечна? Как образуются галактики, из чего состоят? И т.д.


top.document.title=document.title; chid="part-007"; chnum=7; chkurl(); doStart(sa); 1.6.1.

Модели происхождения Вселенной

Не останавливаясь подробно здесь на других ранних моделях, напомню все же, что в историческом аспекте первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные 5 планет, Солнце и Луна. Затем Аристарх Самосский в III веке до нашей эры предложил гелиоцентрическую систему, возрожденную польским священником Коперником в 1514 г. Сюда же можно отнести и античную систему Птоломея, согласно которой за последней сферой располагались ад и рай. Кстати, «модернизацией» этой модели занимались и Кеплер (эллиптические орбиты вместо круговых) и Галилей. Все это продолжалось до появления законов Ньютона в небесной механике в XVIII веке. Уже в это время (а идеи Джордано Бруно еще ранее - XVI век) возникли представления о бесконечной Вселенной. В XIX веке они развились в представления Платона о бесконечной в пространстве, но неизменной во времени Вселенной. Это была стационарная космологическая модель, которая по сути близка статической Вселенной Эйнштейна.

Предполагалось, что пространство - абсолютно, однородно и изотропно, а время - абсолютно и однородно, т.е. использовались строительные материалы классической механики и евклидовой геометрии. Это, кстати, устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном так и во временном понимании. Бог создал и все! Кстати, с материалистической точки зрения можно предположить, что Бог в теологии - это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялись как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Выражаясь на гуманитарном языке, можно сказать - оставались «равнодушными» на такой сцене жизни. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла согласно [159] как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм). Как мы уже знаем, в СТО и ОТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой, причем скорость передачи взаимодействия конечна и равна скорости света с. Было показано, что геометрия пространства и времени не является евклидовой и определяется наличием материи в данной области. Пространство и время приобретают динамические свойства, им приписывается кривизна, которая влияет на характер движения тел в данной области и которая сама зависит от наличия и движения тел. Пространство и время - уже не «равнодушная» сцена событий, а активные участники, влияющие на события, регулирующие их.

В настоящее время существует много космологических теорий, и нельзя, естественно, сказать, что уже установлена истина в последней инстанции, учитывая еще указанную сложность астрофизических и космологических экспериментов. Однако одна из современных таких теорий - теория Большого взрыва (Big Bang) - смогла к настоящему времени объяснить почти все факты, связанные с космологией.

В основе этой теории лежит предположение, что физическая Вселенная образовалась в результате гигантского взрыва примерно 10 миллиардов лет тому назад, когда все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва (БВ) была предложена в 1948 г. нашим соотечественником Г.Гамовым. В свое время Г. Гамов, блестящий теоретик (учился в ЛГУ вместе с Л. Ландау, Н. Козыревым), до войны был самым молодым членом-корреспондентом АН СССР, затем эмигрировал на Запад и по сему поводу, естественно, до последнего времени [216] замалчивался советской официальной наукой. В то же время ему принадлежат по крайней мере три научных результата «нобелевского ранга»: модель БВ, предсказание температуры реликтового излучения и генетического кода ДНК. Кроме того он был отличным популяризатором науки и опубликовал более 20 прекрасных научных книг.

В то же время неизвестно достоверно - как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее, огромное радиационное давление внутри этого сгустка привело к необычайно быстрому его расширению - Большому Взрыву. Составные части этого сгустка, разлетевшиеся с максимальными относительными скоростями, теперь образуют далекие галактики, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какие они были примерно 2 ×109 лет тому назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва (ТБВ). Заметим здесь, что открытие расширяющейся Вселенной и принятие научным сообществом этого факта можно считать огромным мировоззренческим прорывом в интеллектуальном мире.

Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций в первые моменты после БВ. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но в результате их могло быть образование лишь гелия. Спектр гелия наблюдался в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента от греческого Гелиос - Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода - (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвездном пространстве водород и гелий находятся в основном в атомарном состоянии. Таким образом теория БВ согласуется с наблюдаемой распространенностью гелия во Вселенной.

Рассмотрим варианты объяснения образования сгустка. Предполагается, что эти межзвездные атомы водорода и гелия служат сырьем для образования новых звезд. Заметим, что распределение газа в межзвездном пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~ 1 атом/см3, однако имеются сильные флуктуации. Эти флуктуации плотности объясняются хаотическим движением атомов в пространстве. Случайно плотность вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.

Наиболее важным подтверждением теории БВ является обнаружение реликтового излучения (РИ), как раз и связанного, по-видимому, с существованием первоначального сверхплотного сгустка вещества и излучения. Название «реликтовое излучение» ввел наш астрофизик И. Шкловский. Первоначально это излучение представляло собой лучи, которые обладали огромной энергией, но расширение и охлаждение сгустка привели к тому, что излучение также «остыло» и энергия фотонов уменьшилась, т.е. возросла длина их волны. Это излучение и сейчас существует во Вселенной, но теперь уже в виде радиоволн, микроволнового и инфракрасного излучения. Г. Гамов как раз и рассчитал температуру реликтового излучения. По расчетам она составляет 3К, согласно современным данным 2,7 К.

Рассматривая такой сгусток вещества и излучения, мы должны понимать, что его нельзя рассматривать как бы со стороны, с далекого расстояния, и считать, что он расширяется по направлению к нам (или от нас). Сгусток есть ни что иное как сама Вселенная, и Земля находится внутри нее. Внутри же сгустка при расширении его все остальное вещество во Вселенной движется в направлении от Земли (вспомним шарик с пятнышками), или от любого куска вещества в сгустке. Поэтому излучение сгустка бомбардирует Землю со всех сторон. Любой наблюдатель во Вселенной должен регистрировать это излучение с равной интенсивностью с любого направления в пространстве.

Так как расширение продолжается ~1010 лет, то огромная начальная температура уменьшилась согласно теории, к настоящему времени до средней температуры Вселенной порядка 3 К. Максимум в распределении длин волн, соответствующий излучению источника с такой температурой в 3К, должен приходиться на длину волны 0,1 см. Это означает, что если теория БВ верна, то должны экспериментально наблюдаться два эффекта: спектр излучения Вселенной должен соответствовать равновесному излучению при 3К и это излучение должно приходить с равной интенсивностью с любого направления в пространстве, т.е. быть изотропным. Начиная с 1965 г. проводились многочисленные измерения, обнаружившие космические радиоволны с малой энергией, которые можно интерпретировать как равновесное излучение остывшего, но все еще расширяющегося сгустка, причем с длиной волны, соответствующей Т = 3К. Таким образом, получены некоторые экспериментальные доказательства справедливости теории БВ.

Если считать, что эксперименты подтверждают нынешнее расширение Вселенной, то будет ли она продолжать расширяться и дальше? ОТО предполагает следующий ответ на этот вопрос. Считается, что существует некая критическая масса Вселенной. Если действительная масса Вселенной меньше критической, гравитационного притяжения вещества во Вселенной будет недостаточно, чтобы остановить это расширение, и оно будет идти и дальше. Если же действительная реальная масса больше критической, то гравитационное притяжение в конце концов замедлит расширение, приостановит его и затем приведет к сжатию. В этом случае Вселенную ожидает коллапс, в результате которого вновь образуется сгусток. Тем самым готовы условия для нового Большого взрыва и последующего потом расширения. Следовательно, Вселенная может пульсировать между состояниями максимального расширения и коллапса. Это и есть модель пульсирующей Вселенной.

Что дают эксперименты? Они, конечно, очень не простые, скорее оценочные, так как кроме определения массы Вселенной в виде вещества и энергии в звездах, галактической пыли и газе необходимо учитывать вещество и в межгалактическом пространстве. А вот с этим как раз большая неопределенность. Прямые эксперименты затруднены тем, что межгалактический водород почти полностью ионизирован излучением галактик и квазизвездных объектов (квазаров). Поэтому для регистрации ионизированного водорода необходимы рентгеновские методы измерения и вне пределов атмосферы Земли, чтобы избежать поглощения. Как показывают измерения с помощью ракет и спутников, а также предварительные расчеты, полная масса Вселенной с учетом межгалактического вещества значительно превышает критическую. Это означает, что модель пульсирующей Вселенной как будто подтверждается. Получается, что мы живем в такой вселенной, которая взрывается, расширяется и снова сжимается примерно каждые 80 миллиардов лет.

Рассмотрим, каким предполагается поведение горячей Вселенной, расширяющейся после своих родов во время Большого Взрыва. Известный наш теоретик, занимавшийся в том числе и астрофизикой, Я.Б.Зельдович заметил, что теория БВ в настоящий момент не имеет сколько-нибудь заметных недостатков. Она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени и обе они имели много противников, утверждавших, что новые идеи, изложенные в них, абсурдны и противоречат здравому смыслу. Однако вспомним определение Эйнштейном здравого смысла!

Успех модели расширяющейся Вселенной связан не только с экспериментальными подтверждениями, о которых мы говорили ранее, но и с тем, что, как оказалось, физикой микромира, в том числе физикой элементарных частиц, можно непротиворечиво объяснить поведение «ранней» Вселенной, причем, как это не парадоксально звучит, буквально по долям микросекунд (и даже более того, отсчет идет от 10-43 с!!!). Поэтому в этом разделе рассмотрим кратко и имеющиеся представления о физике элементарных частиц. Вообще же, по существу сейчас возникла новая наука - космомикрофизика. В космомикрофизике объединяются не только космологические модели Большого Взрыва, расширяющейся и пульсирующей Вселенной, а также и строение материи в виде элементарных частиц и понятия устойчивости-неустойчивости материи, ее симметрии-асимметрии, самоорганизации и эволюции. Модель горячей Вселенной описывает ее как «котел кипящих элементарных частиц».


Дата добавления: 2015-09-28; просмотров: 53 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.011 сек.)







<== предыдущая лекция | следующая лекция ==>