Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

1. Термодинамическая система – часть пространства, выделенная для рассмотрения и отделенная от окружающей среды реальной (межфазовой) или условной границей. Системы могут быть изолированными, 2 страница



При вычислении энтропии требуется математическая модель объекта и его фазового пространства. Математическая модель содержит атрибуты двух типов.

Атрибуты, инвариантные относительно всех допустимых преобразований модели, называются структурными. Они образуют структуру модели. К ним относятся уравнения, описывающие объект, пространство, из которого берут свои значения переменные, алгебра и топология на этом пространстве, система начальных, граничных условий и т. п.

Другие атрибуты математической модели могут изменять свои значения при разных преобразованиях. Это вариативные параметры. К ним относятся значения переменных, координатные системы, в которых записаны уравнения, изменяемые связи между частями модели, границы областей, где ищутся решения и т. п. Полная совокупность всех вариативных параметров называется фазовым состоянием модели (его общей записью), а набор конкретных значений этих параметров — фазовой точкой или микросостоянием. Совокупность всех возможных фазовых точек называется фазовым пространством модели. Обычно, на таком пространстве можно ввести естественную метрику или топологию.

Энтропия дает числовую меру неопределенности фазовой точки. Поэтому в любом определении энтропии присутствует математическое описание объекта и его состояния, а также дополнительные характеристики модели, позволяющие измерить неопределенность.

14. Как уже отмечалось, в изолированных системах энтропия может только увеличиваться и при равновесии достигать максимума. Поэтому ее изменение может служить критерием, указывающим направление процессов именно в таких системах. Однако на практике большинство процессов протекает в неизолированных системах. Действие почти всех промышленных агрегатов связано с теплообменом и изменениями объема. Поэтому для таких незамкнутых систем целесообразно выбирать другие критерии равновесия. Возможность или невозможность процессов при этом связывается с работой, которую они могли бы произвести.

Можно было бы принять величину работы в качестве меры тенденции данного процесса к самопроизвольному протеканию, т.е. определяющей его направление. Однако, как отмечалось в гл. I, работа зависит от пути процесса и поэтому не может служить такой мерой. Тем не менее она становится подобным критерием, если ограничить рассмотрение частным, но весьма важным типом процессов, происходящих при постоянной температуре, т.е. изотермических обратимых процессов. Как следует из уравнения (I.9), это обусловлено тем, что в таких процессах работа не зависит от пути и является максимальной. Важно то, что ее величина равна изменению некоторой функции состояния. Действительно, можно показать, исключив величину δQ из выражений δQ = dU + δW и dS ≥ δQ/T, что



δW ≤ TdS - dU.

Кроме того, при условии постоянства температуры

δW ≤ - d(U - TS). (II.20)

Таким образом, при обратимом изотермическом процессе работа равна убыли некоторой функции состояния U - TS = A, называемой энергией Гельмгольца:

δW ≤ - dA. (II.21)

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции А.

При необратимом протекании процесса произведенная работа меньше убыли энергии Гельмгольца. Это связано с тем, что часть изменения функции А не реализуется в виде работы, а по различным причинам, например из-за трения, превращается в тепло. Вообще следует иметь в виду, что если процесс осуществился, то независимо от того, дал он работу или нет, способность системы производить работу теряется или, другими словами, ее энергия Гельмгольца уменьшается.

Из определения А следует, что U = A + TS, т.е. что внутренняя энергия системы как бы состоит из двух частей: энергии Гельмгольца А и связанной энергии TS1. Первая превращается в работу при изотермических процессах, а вторая - нет. Убыль энергии Гельмгольца при обратимом изотермическом процессе равна произведенной работе.

Если к условию постоянства температуры добавить условие постоянства объема, т.е. δW = pdV = 0, то из уравнения (II.21) получим

0 ≤ - dA или dA ≤ 0 (II.22)

Отсюда следует, что при обратимых процессах, при постоянных температуре и объеме энергия Гельмгольца не изменяется, а при необратимых может только убывать. Это означает, что функция А является критерием, который позволяет судить о направлении процессов в незамкнутых системах.

Очевидно, для таких систем условием равновесия является минимум А.

Таким образом, расчеты энергии Гельмгольца могут быть использованы для выяснения направления процессов, протекающих, например, в автоклавах. Если расчет показывает, что А уменьшается, то процесс является самопроизвольным.

Пусть, например, в герметически закрытом котле при постоянной Т находятся в двух сосудах чистая вода и водный раствор какого-либо нелетучего вещества. Как найти изменение А системы при переходе некоторой части воды в раствор? Для этого необходимо мысленно провести этот процесс обратимо, таким образом, чтобы получить максимальную работу. При этом первой стадией является испарение одного моля воды. Так как этот процесс протекает при постоянном давлении p1, то W1 = p1(Vn - уж), или, пренебрегая объемом воды по сравнению с объемом пара и считая пар идеальным газом, W1 = RT.

Известно, что давление пара над чистой водой р1 выше, чем над раствором р2. Прежде чем переводить испаренную воду в раствор, дадим уменьшиться давлению р1 до р2 путем обратимого изотермического расширения. При этом полученная работа выразится уравнением W2 = RTln(p1/p2).

На третьей стадии происходит конденсация пара при давлении р2 и тем самым один моль воды переходит в раствор. При этом затрачивается работа W3 = -RT.

При обратимом процессе работа равна убыли функции А, поэтому

W1 + W2 + W3 = RTln(p1/p2) = - ΔA

или

ΔA = - RTln(p1/p2), т.е. ΔA < 0.

Отсюда следует, что если рассматриваемая система будет предоставлена самой себе, то в ней будет самопроизвольно совершаться переход чистой воды в раствор.

В технике большинство процессов совершается не при постоянном объеме, а при постоянном давлении. Поэтому, кроме энергии Гельмгольца А, целесообразно ввести такую функцию состояния, которая служила бы критерием равновесия в условиях постоянства давления и температуры.

Если объем системы изменяется, то, согласно уравнению (II.21):

pdV ≤ -dА или dA + pdV ≤ 0.

При постоянном давлении последнее неравенство принимает вид

d(A + pV) ≤ 0. (II.23)

Сумма в скобках правой части неравенства является функцией состояния, так как включает функцию состояния А, а также р и V, изменения которых не зависят от пути процесса. Эта новая функция состояния G в отличие от А называется свободной энергией Гиббса и определяется уравнением

G = A + pV = U - TS + pV = H - TS, (II.24)

а для процессов это уравнение принимает вид

ΔG = ΔH - ТΔS. (II.25)

При обратимых процессах G не изменяется, а при необратимых она должна только убывать. Следовательно, условием равновесия в системах при постоянных давлении и температуре является минимум G. Уравнение (II.25) является одним из наиболее важных в химической термодинамике и будет в дальнейшем часто использоваться.

15.

16. Между пятью термодинамическими функциями состояния: внутренней энергией dU, энтальпией dН, энтропией dS, энер­гией Гиббса dС и энергией Гельмгольца - существует связь. Эту связь, которая определяется уравнениями (1.6), (5.3) и (5.4), можно проследить при помощи рис. 5.3, а. Связь между термодинамическими функциями и основными параметрами системы р, V,T.

Наибольшее практическое значение имеют изобарно-изотермические процессы, связь между параметрами которых характеризуется прямой.

Можно определить различие между dG и для химических реакций на основе соотношения между энергией Гиббса и энергией Гельмгольца,т. е.

dG = dА + pV= dА + dnRT.

Для реакций в газовой среде, когда газы можно считать иде­альными, при dn= 0 энергия Гиббса равна энергии Гельмголь­ца, т. е. dG = dА Для реакции в конденсированных средах вторым слагаемым в правой части уравнения можно прене­бречь и считать, что dG =dА.

Все рассмотренные пять термодинамических функций являют­ся характеристическими. В термодинамике принято называть функцию характеристической, если ее значения и значения ее производных разного порядка достаточны для выражения в явной форме всех термодинамических свойств системы. Характери­стическими являются функции dU, dН, dG, а также и dS.

17. Третье начало термодинамики (теорема Нернста) — физический принцип, определяющий поведение энтропии при абсолютном нуле температуры. Является одним из постулатов термодинамики.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

Заметим, что третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение): третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что практически не мешает большинству термодинамических исследований, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно третьему началу термодинамики, при Т → 0 значение ΔS → 0.

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:. Отсюда S0 = 0, что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы S = kln(W). При абсолютном нуле температуры система находится в основном квантово-механическом состоянии, если оно невырождено, для которого W = 1 (состояние реализуется единственным микрораспределением). Следовательно, энтропия S при Т → 0 равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем может стать существенной при T = 0 дискретность квантовых уровней макроскопической системы, приводящая к явлениям квантового вырождения.

Из третьего начала термодинамики следует, что абсолютного нуля температуры нельзя достигнуть ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться, поэтому третье начало термодинамики иногда формулируют как принцип недостижимости абсолютного нуля температуры. Из третьего начала термодинамики вытекает ряд термодинамических следствий: при T → 0 должны стремиться к нулю теплоёмкости при постоянном давлении и при постоянном объёме, коэффициенты теплового расширения и некоторые аналогичные величины. Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при Т = 0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.

Третье начало термодинамики часто нарушается в модельных системах. Так, при энтропия классического идеального газа стремится к минус бесконечности. Это говорит о том, что при низких температурах идеальный газ должен вести себя не по уравнению Менделеева-Клапейрона.

Таким образом, третье начало термодинамики указывает на недостаточность классической механики и статистики и является макроскопическим проявлением квантовых свойств реальных систем.

18. Химический потенциал (mi), термодинамическая функция, применяемая при описании состояния систем с переменным числом частиц. В случае системы, состоящей из i компонентов, Х. п. определяется как приращение внутренней энергии U системы при добавлении к системе бесконечно малого количества молей i-того компонента, отнесённое к этому количеству вещества, при постоянных объёме V, энтропии S и количествах молей каждого из остальных компонентов nj (j ¹ i). В общем случае Х. п. может быть определён как приращение любого из остальных потенциалов термодинамических системы при различных постоянных параметрах: гиббсовой энергии G - при постоянных давлении р, температуре Т и nj; гельмгольцевой энергии А - при постоянных V, Т и nj; энтальпии Н - при постоянных S, р и nj.

Х. и. зависит как от концентрации данного компонента, так и от вида и концентрации др. компонентов системы (фазы). Только в простейшем случае - смеси идеальных газов - mi зависит лишь от концентрации рассматриваемого компонента и от температуры:

mi = mi 0+ RT In pi,

где pi - парциальное давление компонента i в смеси, R - газовая постоянная, mi0 - значение mi при pi = 1 атм. Для смеси неидеальных газов в равенстве (2) должна стоять фугитивность этого компонента. Х. п. характеризует способность рассматриваемого компонента к выходу из данной фазы (путём испарения, растворения, кристаллизации, химического взаимодействия и т.д.). В многофазных (гетерогенных) системах переход данного компонента может происходить самопроизвольно только из фазы, в которой его Х. п. больше, в фазу, для которой его Х. п. меньше. Такой переход сопровождается уменьшением Х. п. этого компонента в 1-й фазе и увеличением во 2-й. В результате разность между Х. п. данного компонента в этих двух фазах уменьшается и при достижении равновесия Х. п. компонента становится одинаковым в обеих фазах. В любой равновесной гетерогенной системе Х. п. каждого компонента одинаков во всех фазах.

Если в различных фазах или в разных местах одной фазы Х. п. какого-либо компонента неодинаков, то в системе самопроизвольно (без затраты энергии извне) происходит перераспределение частиц, сопровождающееся выравниванием Х. п.

Из условий термодинамического равновесия систем, в которых возможны химические реакции, фазовые переходы и др. процессы перераспределения частиц, и уравнения, учитывающего баланс частиц, вытекают важнейшие термодинамические соотношения: действующих масс закон, фаз правило Дж. У. Гиббса, основные законы разбавленных растворов (см. Вант-Гоффа закон, Рауля законы, Генри закон и др.) и т.д.

Х. п. в качестве нормировочной постоянной входит в распределение Больцмана, а также в распределения по энергиям Бозе - Эйнштейна и Ферми - Дирака для частиц идеального газа (см. Статистическая физика). Х. п. вырожденного газа электронов (ферми-газа) тождественно совпадает с граничной ферми энергией.

Х. п. был введён Гиббсом, численно выражается в единицах энергии на единицу количества вещества (дж/моль) или на единицу массы (дж/кг).

19. Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k 1[A]равн[B]равн = k 2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k 1/ k 2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k 1 и k 2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = [NH3]2 равн/[H2]3равн[N2]равн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

20. Принцип смещения равновесия (принцип Ле-Шателье). Если на систему, находящуюся в устойчивом равновесии, произведено внешнее воздействие (изменено одно из условий, определяющих равновесие: температура, давление, концентрация), то в системе возникают такие процессы, которые уменьшают эффект данного воздействия и приводят систему к новому состоянию устойчивого равновесия.

Применяя принцип Ле-Шателье, можно очень быстро сделать качественный вывод о влиянии температуры и давления на положение равновесия, можно предугадать какие условия будут способствовать более полному осуществлению процесса. Так, при повышении температуры равновесная реакция, протекающая с поглощением тепла, сдвигается в сторону увеличения продуктов реакции. Понижение температуры сдвигает реакцию в сторону увеличения реагирующих веществ. Для реакции, протекающей с выделением тепла, закономерности будут противоположными.

Влияние давления на смещение равновесия химической реакции зависит от количества газообразных молекул в левой и правой частях уравнения реакции. Повышение давления вызывает сдвиг равновесия химической реакции в сторону уменьшения числа газообразных молей. Если реагирующие вещества и продукты реакции занимают одинаковый объем (реакция идет без изменения числа газообразных молей), то изменение давления не вызывает сдвига равновесия.

21. ГИББСА ПРАВИЛО ФАЗ

(правило фаз), для любой термодинамически равновесной системы число параметров состояния (v), к-рые можно изменять, сохраняя число существующих фаз (j) неизмененным, определяется выражением: v=k+n-j, где k — число компонентов системы, n — число параметров состояния системы, имеющих одно и то же значение во всех фазах (обычно темп-pa Т и давление р). Величину v иногда наз. вариантностью системы. Правило фаз было выведено Дж. У. Гиббсом (1876) из условий термодинамического равновесия многокомпонентных систем. Правило справедливо при след. предположениях:

1) фазы имеют достаточно большие размеры, так что поверхностными явлениями можно пренебречь;

2) каждый компонент может проходить через поверхности раздела фаз (полупроницаемые перегородки отсутствуют).

Если равновесное состояние системы определяется двумя параметрами (напр., Т и р), то v=k+2-j. Значения v<0 не имеют физ. смысла, следовательно, j?k+2, т. е. число фаз, сосуществующих в равновесии, не может превосходить числа независимых компонентов более чем на 2. При v=0 (безвариантная, или нонвариантная, система) равновесие имеет место при вполне определ. значениях Т, р к составах каждой фазы. Условие v=0 определяет, следовательно, наибольшее возможное число фаз (jмакс) в равновесной системе, составленной из определ. числа компонентов. Для k=1 (индивидуальное в-во, напр. вода) jмакс=3 (в равновесии могут находиться пар, лёд, вода, (см. ТРОЙНАЯ ТОЧКА)), для k=2 (бинарная система, напр. вода и соль) jмакс=4 (соль, лёд, жидкий р-р, пар) и т. д. При v=1 (одновариантная, или моновариантная, система) одну из переменных, напр. Т, можно варьировать, тогда др. переменные (р, концентрации) в условиях равновесия будут полностью определяться темп-рой.

Г. п. ф. применяется в металловедении, металлургии, петрографии, хим. технологии при исследовании многокомпонентных гетерогенных систем, т. к. позволяет рассчитывать возможное число фаз и степеней свободы в равновесных системах при любом числе компонентов.

22. Раствором называется правильно подобранная смесь вяжущего, заполнителя, воды и, в необходимых случаях, специальных добавок, затвердевающая после нанесения ее на поверхность и превращающаяся в камень. До затвердения смесь этих материалов называют растворной смесью.

Вяжущее в растворе заполняет пространство между частичками заполнителя, прочно связывая их между собой в процессе твердения.

Вода в растворе вступает в химическую реакцию с вяжущим.

Заполнитель создает жесткий скелет в растворе, снижает его усадку и экономит вяжущее.

Классификация растворов.

Растворы классифицируют по различным признакам. По плотности растворы подразделяются на тяжелые (1500 кг/м3 и более) и легкие (менее 1500 кг/м3).

По скорости схватывания растворы подразделяются на быстросхватывающиеся и медленносхватывающиеся.

По количеству вяжущего растворы подразделяются на жирные и тощие. Жирными называют растворы с избытком вяжущего. Такие растворы пластичны, но при твердении могут потрескаться и дают большую усадку. Тощие растворы содержат недостаточное количество вяжущего материала. Такие растворы малопластичны, менее удобны в работе, но они дают небольшую усадку, что позволяет использовать их в облицовочных работах.

По виду вяжущего материала растворы подразделяются на глиняные, известковые, гипсовые, известково-гипсовые, цементные, цементно-известковые.

В зависимости от среды твердения различают воздушные растворы, твердеющие в воздушно-сухих условиях (например, гипсовые), и гидравлические, начинающие твердеть на воздухе и продолжающие твердеть в воде или во влажной среде (цементные).

В зависимости от количества вяжущих растворы подразделяют на простые - приготовленные на одном вяжущем материале - и смешанные - приготовленные на нескольких вяжущих.

Составы всех растворов записывают в виде чисел, обозначающих объемные части вяжущего и заполнителя. Составы простых растворов записывают в виде соотношения, состоящего из двух чисел. Первое число (как правило, единица) обозначает, что в растворе содержится одна объемная часть вяжущего материала. Второе число показывает, сколько объемных частей заполнителя необходимо взять на одну часть вяжущего материала. Например, цементный раствор состава 1: 3 означает, что на одну часть вяжущего (цемента) приходится три части заполнителя (песка).

Для смешанных растворов соотношение состоит из трех чисел. Первое число (единица) показывает объемную часть основного вяжущего материала; второе число обозначает количество дополнительного вяжущего, а третье - количество частей заполнителя. Рассмотрим, например, цементно-известковый раствор состава 1:2:8. Из названия раствора ясно, что первое число обозначает количество цемента (одна объемная часть), второе - количество извести (две объемные части), а третье - количество песка (восемь объемных частей).

23. Четыре свойства разбавленных растворов нелетучего вещества в летучем растворителе традиционно объединяются под названием коллигативных свойств:

Понижение давления пара растворителя.

Повышение температуры кипения растворителя.

Понижение температуры замерзания растворителя.

Явление осмотического давления.

Эти свойства называются коллигативными (что означает коллективными) потому, что они зависят от количества имеющихся молекул или ионов растворенного вещества, а не от природы растворенных частиц.

Уравнения, описывающие коллигативные свойства, выведены из. условия, что частицы в растворе не взаимодействуют между собой, го есть ведут себя аналогично идеальным газам. Строго говоря, свойствами идеального раствора не обладает ни один реальный раствор. Но большинство реальных растворов при малых значениях концентраций растворенного вещества практически ведут себя как идеальные, и уравнения, описывающие коллигативные свойства, достаточно точны для большинства разбавленных растворов.

Зависимость коллигативных свойств растворов от природы растворителя выражается в криоскопической и эбуллиоскопической константах, индивидуальных для каждого растворителя.

Коллигативные свойства играли важную роль для развития химии, поскольку они позволяли судить о числе частиц имеющегося в наличии растворенного вещества, а, следовательно, о его молекулярной массе и степени ионизации в растворе. Коллигативные свойства позволили Аррениусу показать, что в растворе содержится больше частиц, чем имелось в наличии молекул растворенного вещества, а, следовательно, что молекулы растворенного вещества в растворе распадаются на ионы. В настоящее время коллигативные свойства используются главным o6pазом для определения молекулярных масс неизвестных веществ.

Способы выражения концентрации растворов

Концентрацию веществ в растворах можно выразить разными способами. На этой страничке вы с ними познакомитесь. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m:w(B)= m(B) / m

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) · V),

где М(B) - молярная масса растворенного вещества г/моль.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют моляльностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

Эоснования = Моснования / число замещаемых в реакции гидроксильных групп

Экислоты = Мкислоты / число замещаемых в реакции атомов водорода

Эсоли = Мсоли / произведение числа катионов на его заряд

24. Рауля законы, количественные зависимости, связывающие концентрацию раствора или с давлением насыщенного пара растворителя над раствором, или с изменением температуры кипения (замерзания) раствора. Один из законов Ф. Рауля гласит: относительное понижение парциального давления пара растворителя равно мольной доле растворённого вещества,

где — давление насыщенного пара чистого растворителя при данной температуре, p1 — давление насыщенного пара растворителя над раствором, х2 — мольная доля растворённого вещества. В такой форме закон применим лишь к растворам, насыщенный пар которых ведёт себя как идеальный газ. Растворы, для которых соотношение (1) выполняется при всех концентрациях и при всех температурах в области существования раствора, часто называются идеальными (совершенными). В более общем случае в соотношении (1) должны использоваться не давления и концентрации, а летучести и активности. Для другого закона Рауля, по которому повышение температуры кипения (tкип) или понижение температуры замерзания (tк) раствора прямо пропорционально моляльной концентрации растворённого вещества, имеют место соотношения:

Dtкип = Еэ×m, Dtк = Eкm, (2)

где Dtкип — величина повышения tкип и Dtк — величина понижения tк, m — моляльная концентрация раствора, а Еэ и Ек — т. н. эбулиоскопическая (см. Эбулиоскопия) и криоскопическая (см. Криоскопия) постоянные растворителя (они приводятся во многих физико-химических таблицах). Соотношения (2) используют для определения молекулярной массы растворённого вещества по экспериментально определяемым величинам Dtкип и Dtк.

Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:

Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.

Для бинарного раствора, состоящего из компонентов А и В (компонент А считаем растворителем) удобнее использовать другую формулировку:

Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе.

На поверхности оказывается меньше способных испаряться молекул растворителя, ведь часть места занимает растворённое вещество.


Дата добавления: 2015-09-30; просмотров: 32 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.023 сек.)







<== предыдущая лекция | следующая лекция ==>