Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Івано-Франківський національний технічний університет нафти і газу 1 страница



Івано-Франківський національний технічний університет нафти і газу

Н.Ф. Соломчак, І.І. Озарко, Н. В. Мойссснко

ENGLISH FOR OIL AND GAS ENGINEERS

Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів вищих навчальних закладів

Івано-Франківськ

Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів вищих навчальних закладів (лист № 1.4/18 Г-2829 від 24.12 2008р.)

УДК 811.111: 622.24 (075.8)

Соломчак Н. Ф., Озарко І. І., Мойсеєнко Н. В. English for Oil and Gas Engineers. Навчальний посібник - Івано-Франківськ: Факел, 2009. - 213с.

Навчальний посібник призначений для розвитку навичок стикування англійською мовою за фахом студентів напряму підготовки “Нафтогазова справа”. 6 частин навчального посібника містять тексти фахового спрямування, вправи до них та тестові завдання. Навчальний посібник має предметний покажчик та докладний термінологічний словник до кожної частини. У додатках подало тексти для самостійного опрацювання.

Рецензенти:

Завідувач кафедри лексикології і стилістики англійської мови Одеського національного університету ім. І. Мечникова, доктор філологічних наук, професор Колєгаєва І. М.

Завідувач кафедри теорії та практики перекладу Чернівецького національного університет)' ім. Ю. Федьковича, кандидат філологічних наук, доцент Бялик В. Д.

Завідувач кафедри буріння нафтових і газових свердловин Івано-Франківського національного технічного університету нафти і газу, доктор технічних наук, професор Коцкулич Я. С. Заступник директора з будівництва^ св^даадзиц.НДП1 ВАТ “Укрнафта”, кандидат технічних крр&вцоидент

У1ІГА Гсршак Б. А. г

ISBN 978-966-694-095-0

© Соломчак Н Ф., Озарко 1.1., Мойсеєнко II. В.

CONTENTS

Foreword............................................................................. 5

PARTI MECHANICAL PROPERTIES OF ROCKS 7

Unit 1 Physical and Mechanical Properties of Rocks............ 7

Unit 2 The Effect of Three-Dimensional Compression and

T emperature on the Mechanical Properties of Rocks ______ 15

Unit 3 T he Effect of Saturating Fluid on the Mechanical

Properties of Rocks................................................................. 20

Unit 4 Abrasiveness of Rocks................................................ 23

Control Task.......................................................................... 27

PART 2 DRILL BITS.................................................................. 30

Unit 5 Purpose and Classification................................................ 30

Unit 6 Roller Bits................................................................... 33

Unit 7 Diamond-Set Bits......................................................... 35

Control Task.......................................................................... 40

PART 3 MUD TECHNOLOGY................................................ 4.3

Unit 8 Purpose and Classification of Drilling Fluids.................. 43



Unit 9 Water-Base Drilling FTuids........................................... 46

Unit 10 Chemical Agents for the Treatment of Water-Base

Drilling Fluids...................................................................... 52

Unit 11 Chemical T reatment of Waler-Base Drilling Fluids... 57

Unit 12 Density Adjustment of Water-Base Mud FTuids 61

Unit 13 Oil-Base Drilling Fluids............................................. 63

Unit 14 Emulsion Muds.......................................................... 67

Unit 15 Gaseous Agents and Aerated Drilling Fluids................... 70

Control T ask....................................................................... 74

PART 4 DRILLING MET HODS AND DRILLING

EQUIPMENT........................................................................ 77

Unit 16 Methods of Drilling..................................................... 77

Unit 17 Drilling Equipment.................................................. 86

Unit 18 Auxiliary Drilling Equipment....................................... 90

Control T ask......................................................................... 101

PARE 5 COMPLICAT IONS IN THE COURSE OF

DRILLING............................................................................. 104

Unit 19 Circulation Loss.......................................................... 104


Unit 20 Gas-, Oil-, and Water-Showings................................... 111

Unit 21 Crumbling and Caving-in of Rocks, Narrowing of the

Well Bore.............................................................................. 115

Unit 22 Sticking of Drilling and Casing Strings.......................... 120

Unit 23 Deep Well Drilling........................................... 122

Control Task........................................................................... 126

FART 6 DRILLING IN AND TESTING OF PAY BEDS 129

Unit 24 Influence of Drilling Fluid on the Collecting

Properties of Pay Beds............................................................ 129

Unit 25 The Choice of Mud F luid for Drilling in the Pay Bed.. 133

Unit 26 Choosing a Method for Opening-up a Reservoir-Bed and an Arrangement of the Area in and around the Hole Face

in Producing Wells.................................................................. 136

Control Task........................................................................... 140

Glossary................................................................................. 143

Index..................................................................................... 187

References.............................................................................. 195

Supplement............................................................................ 197


Передмова

Навчальний посібник з англійської мови ENGLISH FOR OIL AND GAS ENGINEERS розроблений відповідно до програми з англійської мови професійного спрямування і призначений для студентів вищих навчальних закладів усіх форм навчання (денної, заочної та дистанційної) напряму підготовки "Нафтогазова справа".

Мета посібника - розвивати у студентів навички читання і перекладу оригінальної технічної літератури англійською мовою, досягнути активного засвоєння лексичного і граматичного матеріалу та сприяти розвитку навичок усного мовлення в галузі програмного забезпечення та комп’ютерних систем.

За своєю навчальною метою і змістом навчальний посібник відповідає вимогам Програми з англійської мови для вищих технічних навчальних закладів Міністерства освіти і науки України.

В основу побудови цього посібника використано такі принципи подачі матеріалу: а) тематичний принцип підбору текстів; б) принцип поступового з наступним ускладненням введення і засвоєння лексики і граматики; в) професійна спрямованість мовлення.

Підбір текстів за фахом з наступним їх опрацюванням здійснювався авторами протягом багатьох років у періоди науково-практичної і викладацької роботи у вищому навчальному закладі.

Навчальний посібник складається з 26 розділів, об’єднаних у 6 частин. Частини 1-4 містять інформацію про механічні властивості порід, типи бурових розчинів, типи доліт, нафтогазове обладнання та методи буріння. Частини 5-6 присвячені проблемам технології і методів буріння свердловин. Для закріплення вивченого матеріалу додаються тестові завдання.

Навчальний посібник містить предметний покажчик та докладний термінологічний словник до кожної частини.

Усі 6 частин схожі за своєю структурою і містять наступні елементи:

• основний навчальний професійно спрямований текст;

• завдання для роботи з текстом;

• лексико-граматичні вправи;

• комунікативні вправи для розвитку мовлення.

До кожного розділу розроблені лексико-граматичні вправи для засвоєння і закріплення основних граматичних явищ англійської мови і лексичного мінімуму, які є необхідними для самостійної роботи над англійською технічною літературою за спеціальністю. Навчальний посібник передбачає повторення деяких розділів граматики, відомих студен там зі шкільного курсу навчання. Однак повторення граматики відбувається на матеріалі сгіецтекстів з урахуванням особистостей науково-технічного стилю мови. Система вправ спрямована на розвиток навичок перекладу, анотування і реферування оригінальної літератури за зазначеним вище напрямом. Структура посібника розроблена з дотриманням кредитно-модульної системи та елементів програмного навчання підготовки бакалаврів у вузах.

Для контролю знані» студентів до кожної частини розроблені контрольні завдання.

У додатках подано тексти для самостійного опрацювання. Навчальний посібник може бути рекомендований студентам для самостійного опрацювання відповідно до університетської навчальної програми з англійської мови професійного спрямування.


PART 1 MECHANICAL PROPERTIES OF ROCKS

Unit 1 Physical and Mechanical Properties of Rocks

1 Learn the meaning of the following words, word-combinations and word groups:

rock, cohesion, substance, ore, layer, density, volume, solid, magmatic, sedimentary, porosity, void, to drill, well, clay, said, pore, to diminish, deposit, to saturate, fluid, tensile, resistance, friability, tension, firmness, grain, to augment, contingent, to obey, lateral, pressure, curve, to apply, lag, lattice, creep, bedding, to regain.

2 Read and translate Text 1:

Text 1

The rock is made up of minerals of a mo*e or less invariable composition bound together by forces of molecular interaction (cohesion) that arise either at the; sites of direci: contact of minerals with one another, or at the sites of their contact with mineral particles of extraneous cementing substances. It is only oies and the upper soil layer that do not come under the term of rocks.

varies from 2100 up to 2900 kg/m[1] (for the most common rocks it lies, in the range of2400 to 2700 kg/m3).

4 Find in Text 2 English equivalents for the following words and expressions; make up sentences with these words:

щільність, твердий, вміст, змінювати, містити, магматичні породи, осадові породи, феромагнітний, силікат, зменшувати, збільшувати, кварц.

5 Make a written translation of Text 2.

6 Read Text 3:

T ext 3

Quantitatively, porosity is commonly characterized by a coefficient representing a ratio between the volume of voids and the apparent volume of the rock (void ratio). Table 1.1 lists magnitudes of void ratio for rocks most frequently encountered in drilling of oil and gas wells.

"fable 1.

Porosity of Sedimentary Rock

 

Kind of rock

Void ratio, %

Kind of rock

Void ratio, %

Clay

0-0.62

Sandstone

0-0.53

Argillite

0-0.25

Limestone

0-0.45

Aleurolite

0-0.47

Dolomite

0-0.27

Sand

2-0.55

Marl

0-0.60

 

The mass of a unit volume of dry rock in its natural state (with pores and fissures) is known as volume mass. The latter is tantamount to density only in the case of voidless rocks. The volume mass of porous rocks is always inferior to their density, the difference being the more significant, the greater their porosity. As the depth of the rock occurrence increases its porosity diminishes because of compression from superjacent rocks. Therefore, the volume mass of porous rocks of a similar mineralogical composition increases with depth.

The volume mass of most rocks varies from 1500 to 3500 kg/m3, while the volume mass of sedimentary rocks making up petroleum and natural gas deposits usually lies between 1800 and 2500 kg/m3.

The pores of many rocks entering the structure of oil and gas deposits are filled with fluids (fresh or mineralized water, oil, gas).

The volume mass of rocks saturated with dropping fluids is, naturally, superior to that of dry rocks; the difference between them rising parallel with the increase in the porosity and mineralization of water. The volume mass of saturated sedimentary rocks habitually lies in the range from 2000 to 2700 kg/m3, although in individual instances there may be also significant departures from these figures. The magnitude of the rock pressure is a function of the volume mass.

The magnitude of stresses under which a rock disintegrates characterizes its strength. It is to compression that a rock offers the greatest resistance, whereas its tensile strength usually does not exceed 10 per cent of the compressive strength (Table 1.2). This is explained by the friability (brittleness) of the rocks, by numerous local defects and structural non-uniformities, and also by low forces of cohesion between individual particles.

Table 1.2 Relative Strength of Rocks

Designation

Relative strength, %

of rocks

Compression

Shear

Bending

Tension

Sandstones

 

10-20

2-14

2-5

Clav shales

 

 

15-60

r 10-18

Gvnsum

 

 

   

Ouartzites

 

5-7

 

4-5

Basalts

 

55-100

 

 

Granites

100 1

9-12

 

 

Limestones

 

15-20

8-10

10-13

Marble

 

16-40

-

8-10

 

The strength of a rock is largely dependent upon its mineralogical composition. The strongest rock-forming mineral is quartz, its strength surpassing 500 MPa, while the strength of ferromagnesian silicates and of alumosilicates amounts to 200-500 MPa and that of calcite to 10-20 MPa. Therefore, the strength of a rock commonly accrues with growing content of quartz. The strength is highest in rocks whose density roughly equals that of quartz (about 2700 kg/m3). The strength of a mono-mineral rock is usually superior to that of the polymineral, for the latter nearly always contains weak minerals.

The strength of minerals depends on the size of crystals and diminishes with the increase in their dimensions. This relationship is


particularly significant in crystals measuring less than 0.5 mm.

In rocks the effect of the scale factor on the strength is less marked. This is due to the fact that the strength of a rock depends not only on the strength of the minerals, but also on the firmness of bonding at the intercrystalline boundaries separating the mineral grains. The compressive strength of fine-grained arcose sandstone, for ex simple, is nearly twice as great as that of the coarse-grained one; the compressive strength of marble with a grain size of 1 mm is 100 MPa, whereas the strength of fine-grained limestone with grains measuring 3-4 pm amounts to 200-250 MPa. The strength of this limestone is roughly equal to that of coarse-grained granite, although the strength of quartz and of feldspar, constituents of granite, is 10-12 times as high as that of calcite forming limestone and marble.

Among sedimentary rocks, the strength is the greatest in rocks with siliceous cement. In the case of argillaceous cement, the strength of rocks declines drastically.

The strength of rocks of the same name accrues with

decreasing porosity, for then the number of contacts between mineral particles augments and the forces of their interaction gain in strength. For instance, with an increase of the volume mass from 1500 up to 2700 kg/m3, caused by reduced porosity, the compressive strength of limestones rises from 5 up to 180 MPa.

The strength of rocks is affected by the depth of their

occurrence and the degree of metamorphization. Thus, the strength of clays occurring at the ground surface is 2-10 MPa, whereas the strength of argillaceous rocks that passed through an initial stage of metamorphization under the effects of high temperature and great pressure exerted by overlying rocks may be as high as 50-100 MPa.

The strength of anisotropic rocks is contingent upon the

direction of the active force. The strength in compression of rocks

normal to bedding (lamination) or schi slushy is, as a rule, greater than is the strength along the bedding. The ratio between strength in compression parallel to bedding and that normal to it is termed the coeffic ient of anisotropy (or the anisotropy factor). For the majority of rocks the magnitude of this factor varies from 0.3 to 0.8 and only in isotropic rocks alone it equals unity.

The strength of rocks is also influenced by temperature. When it goes up the strength of argillaceous rocks increases due to sintering or metamorphization. With the temperature rising up to 600-800°C, stabilization takes place in compact fine-grained rocks, this being due to the reduction of natural microjointing and an enhanced area of contacts among mineral grains. On the other hand, the strength of chemogenic rocks diminishes with rising temperature, while their plastic properties gain in intensity.

7 Find in Text 3 English equivalents for the following words and expressions; make up sentences wiith these words:

показник пористості, аргіліт, алевроліт, пісок, пісковик, вапняк, доломіт, мертель, тріщина, стиснення, розтяг, крихкість, ламкість, сланець, мармур, дрібнозернистий, грубозернистий, польовий шпат, глинистий, напружуватись, нашарування, шаруватість, хемогенні породи.

8 Divide Text 3 into logically complete parts and give each a subtitle.

9 Put questions to each part of Text 3 and retell it in English.

10 Pick out from Text 3 all the verbs in the Pa ssive Voice.

11 Read Text 4: Text 4 Elasticity

Most of the rock-forming, minerals are elastico-brittle bodies, e.g. they obey Hooke's law and disintegrate when stresses reach the elastic limit.

On the other hand, by the nature of the relationship between deformation and stresses under a static load, rocks may be classified into three groups: (1) elastico-brittle., subject to Hooke's law; (2) plastic-brittle, whose destruction is preceded by plastic deformation or flow; and (3) highly plastic and heavily porous ones, whose elastic deformation is insignificant.

The elastic properties of rocks are characterized by the modulus of elasticity E and Poisson's ratio p. By the modulus of elasticity is understood the proportionality constant or factor between nonnal stress in the rock and relative deformation that corresponds to it. Poisson's ratio is the proportionality constant between the unit longitudinal and lateral deformations.

In the majority of rocks the modulus of elasticity E varies from

0. 03 X 104 to 1.7 X 105 MPa. Its magnitude is largely dependent upon the mineralogical composition (Table 1.3) and the porosity of the rock, and also on the type of deformation and the magnitude of the applied load. For this reason it is but approximately that one may refer rocks to the category of elastic bodies.

Hence, with growing porosity the modulus of elasticity of rocks diminishes. In tension the modulus of elasticity declines as the load increases; in compression and rising pressure it goes up. This, apparently, is to be attributed to the fact that in tension (and with increasing porosity) the number of contacts between rock grains decreases and the forces of their mutual interaction get weaker, whereas in compression the formerly lost contacts are reestablished and because of their closeness the interaction of mineral particles gains in strength.

Tab

e 1.3 Modulus of Elasticity for Some Rocks

Designation of rocks

Modulus of elasticity EX 10-4, MPa

Designation of rocks

Modulus of elasticity EX 10-4, MPa

Clavs

0.03

Dolomites

2.1-16.5

Clay shales

1.5-3.0

Quartzites

4.0-10.0

Sandstones

0.5-7.8

Aleurolites

1.7-2.7

Limestones

1.3-8.5

Marble

3.9-9.2

 

A number of other features specific for rocks are also related to the abovefactor. In rocks, for example, manifestations of elastic hysteresis are observed. In compression the stress-strain curves fail to coincide in applying and relieving the stress. In the case of porous rocks (sandstone, for instance), the relief curve fails to come to the origin of the coordinates, since there is observed a certain residual deformation owing to the creep of the rock. If a rock is exposed to a certain quickly applied pressure, this pressure being subsequently maintained at the same level, the deformation (strain) will then continue increasing for some time. If the pressure is then quickly relieved the rock will show a certain residual strain that disappears completely only after a definite time interval. This phenomenon is designated as elastic lag or aftereffect.

For the majority of sedimentary rocks the values of modulus of elasticity stand below those for corresponding rock-forming minerals. It is in quartzites only that the moduli of elasticity for the rock and quartz are roughly coincident. This is explained by the fact that quartzite is composed of quartz grains bonded together by means of a regenerated quartz cement.

The modulus of elasticity for rocks is also influenced by the texture of the latter. In rocks presenting a clearly pronounced lamination or schistosity the modulus of elasticity in the direction of lamination is ordinarily higher than in the direction normal to lamination, but sometime the reverse is also true.

For most rocks and minerals Poisson's ratio lies within the range of 0,2 - 0.4 and only in quartz it stands abnormally low, roughly at 0.07, which is conditioned by the structural peculiarity of its crystal lattice. With growing porosity Poisson's ratio in some rocks increases and in others - diminishes.

12 Give English equivalents of the following:

еластично крихкі, подрібнювати, поздовжній, поперечний, модуль пружності, співпадати, підтримувати, залишкова деформація, агломерація, закон Гука, прояв, крива, наслідок.

13 Make a written translation off the following:

A number of other features specific for rocks are also related to the abovefactor. In rocks, for example, manifestations of elastic hysteresis are observed. In compression the stress-strain curves fail to coincide in applying and relieving the stress. In the case of porous rocks (sandstone, for instance), the relief curve fails to come to the origin of the coordinates, since there is observed a certain residual deformation owing to the creep of the rock. If a rock is exposed to a certain quickly applied pressure, this pressure being subsequently maintained at the same level, the deformation (strain) will then continue increasing for some lime. If the pressure its then quickly relieved the rock will show a certain residual strain that disappears completely only after a definite time interval. This phenomenon is designated as elastic lag or aftereffect.

14 Make a plan to Text 4 and retell it.

15 Learn the meaning of the following words, word-coinbinatiions and word groups: plastic deformation, strain hardening, mineral composition of rocks, creep, a long-term action of pressure on the rock, running quality, mastic limit, period of relaxation, plastic properties, peak value, long­term strength point, rock strength, short-term loading.

16 Read Text 5:

Text 5 Plasticity. Creep. Stress Relaxation

Plasticity. As stated earlier, the disintegration of some rocks is preceded by their plastic deformation. It begins as soon as stresses in the rock exceed the elastic limit. In the case of an ideally plastic body such a deformation develops with a constant stress. The real rocks undergo strain hardening: i.e. to increase their plastic deformation it is necessary to build up some additional stress.

Plasticity depends on the mineral composition of rocks and declines with a higher level of quartz, feldspar and other hard minerals. High plastic properties are common to moist clays and to some chernogenic rocks.

The plasticity of solid rocks (granites, crystalline schists, sandstones) becomes manifest, in the main, at high temperatures.

Creep (running quality) becomes manifest with a continually growing deformation under a constant stress. Creep can develop consequent upon a protracted action of pressure on the rock, even when the stress is below the elastic limit. A high degree of creep is characteristic of sedimentary rocks, such as clays, clay shales, argillites and some varieties of limestones. Creep deformations are seen to be severest under pressures applied normal to bedding.

Stress relaxation is a gradual diminution of stresses in a body undergoing continuous deformation. It becomes manifest under a long-term action of pressure on the rock. If the load acting on the rock be brought to a point at which the stresses in it would not exceed the elastic limit, the first to appear will be the elastic flow. With a prolonged action of such a load the elastic deformation will gradually change into plastic one and the stress in the rock will start declining with the growth of plastic deformation. Once the pressure is relieved the rock sample fails to regain its initial shape, though the stress did


not go up beyond the initial Mastic limit.

The time it takes for the stress in the rock to decrease e times is termed the period of relaxation. For most of the rocks this period of relaxation extremely long. Therefore, if a stress that does not transcend the elastic limit acts on the rock for a relatively short period of time, the rock behaves like an elastic body. On the other hand, when the action of such a stress continues to be effective over a time interval comparable to the period of relaxation, the rock then acquires plastic properties. As the action of pressure continues with time the strength of the rock gradually decreases, asymptotically approaching the peak value, known as the long-term strength point. The latter usually comprises 50 to 80 per cent of the rock strength under short­term loading.

17 Put 10 questions to Text 5.

18 Give definitions of plasticity, creep and stress relaxation of rocks using Text 5.

19 Find, read and translate the sentences in Text 5 in which we learn about creep.

20 Working in pairs test each other’s ability to describe physical and mechanical properties of rocks.

Unit 2 The Effect of Three-Dimensional Compression and Temperature on the Mechanical Properties of Rocks

2 Read Text 1. Try to understand its contents. Text 1 The Effect of Three-Dimensional Compression and Temperature on the Mechanical Properties of Rocks

When exposed to three-dimensional (triaxial) compression mechanical properties of rocks beco me subject to material changes.

A uniform triaxial compression of minerals and monolithic rocks is attended, essentially, by elastic deformations, but in the case of porous rocks such a compression can be followed by the development of residual strain or permanent set. The compressibility of minerals and rocks is habitually expressed by the volumetric contraction coefficient (lc, by which is understood a relative contraction of the volume with an increase of three-dimensional compression by 1 Pa. The compressibility is minimal in the strongest minerals. Thus, for diamond Jlc :::: 0.18 • 10-11 Pa-[2]. With increasing three-dimensional compression the volumetric contraction coefficient decreases somewhat for nearly all minerals.

The compressibility of rocks, especially porous ones, is greater than that of minerals, and then,, with increasing three-dimensional compression, the value of the contraction coefficient for rocks drops more sharply than this is the case with minerals. This is due to the fact that under the effect of three-dimensional compression subject to contraction are not minerals alone, but the whole of the rock's structure; the distances between mineral particles along the contact boundaries become s horter, and in porous rocks the volume of voids diminishes. The recuction in porosity is paralleled by dwindling permeability of rocks.


Дата добавления: 2015-09-29; просмотров: 31 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.035 сек.)







<== предыдущая лекция | следующая лекция ==>