Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Часть I. Механизмы хранения и реализации 61 страница



создающих молекулярные интерфейсы для их взаимодействия с

регуляторными и каталитическими субъединицами. Наличие таких комплексов,

как это было установлено в последнее десятилетие, особенно характерно для

клеток эукариотических организмов. Так, исследование молекулярных

механизмов транскрипции у эукариот привело к развитию представления о

транскриптосоме, гигантскому белковому комплексу, в который кроме

холофермента РНК-полимеразы с ее многочисленными субъединицами входят

факторы транскрипции, белки-адаптеры, белковые компоненты системы

репарации и т.п. При этом размер транскриптосомы приближается к таковому

целых рибосом. В гигантские надмолекулярные комплексы организованы и

молекулярные машины системы синтеза ДНК (реплисомы), процессинга и

редактирования РНК (сплайсомы и эдитосомы), молекулярные компоненты

системы протеолитической деградации белков (протеасомы). Создается

впечатление, что организация генетических систем, функционирующих на

основных этапах реализации генетической информации, в гигантские

пространственно упорядоченные комплексы, является общебиологическим

принципом.

815

Комбинаторные принципы. Важным достижением исследований

последних лет является обнаружение способности объединения факторов

транскрипции в разных сочетаниях в большие белковые комплексы. При этом

каждое новое сочетание ограниченного числа факторов придает комплексу

уникальные регуляторные свойства. Возможность такого объединения

определяется наличием в их полипептидных цепях гомологичных доменов,

которые обеспечивают соответствующие белок-белковые взаимодействия.

Реализация комбинаторного принципа позволяет клетке расширить

регуляторные возможности системы транскрипции без привлечения новых

генов, то есть более эффективно использовать генетическую информацию

своего генома.

Принципы комбинаторики стали находить широкое применение в

прикладных молекулярно-биологических исследованиях. Использование

автоматических синтезаторов нуклеиновых кислот позволяет с легкостью

получать в одной пробирке наборы олигонуклеотидов, содержащие все

теоретически возможные нуклеотидные последовательности и следовательно

ассоциированные с ними (прямо или косвенно) возможные биологические

активности. Разработанные простые системы скрининга позволяют выделять из



пула случайных последовательностей нуклеотидов аптамеры и молекулы

рибозимов, обладающие требуемыми биологическими свойствами. С помощью

систем, аналогичных фаговому дисплею, среди продуктов трансляции таких

олигонуклеотидов обнаруживают новые биологически-активные пептиды.

Четырехмерные модели организации экспрессии генов.

Современные карты метаболических путей, с помощью которых пытаются с

исчерпывающей полнотой представить все последовательности биохимических

реакций, протекающих в клетке, своей чрезмерной сложностью обнаруживают

слабость данного прямолинейного подхода к отображению биохимической

информации. Попытки разворачивания на плоскости в виде двухмерной карты

всей последовательности биохимических реакций, высокоупорядоченных в

пространстве и во времени, делают такие всеобъемлющие схемы

малоприменимыми на практике. С аналогичными трудностями придется

столкнуться и генетикам при построении моделей, которые бы отображали

многочисленные отношения между экспрессирующимися генами. Делом

будущего является установление физических и функциональных связей между

816

надмолекулярными комплексами высокоорганизованных в пространстве

генетических подсистем, которые упорядоченно изменяются во времени.

Реализация такого комплексного подхода к анализу генетических систем

позволит отчетливо увидеть в цитозоле и органеллах клеток единую

генетическую систему организма.

Генетический индетерминизм: генотип не определяет всей нормы

реакции организма. Программа-максимум, которую можно было бы

сформулировать, исходя из будущих достижений геномики, это предсказание

всех морфологических и физиологических особенностей взрослого организма

на основании одной лишь первичной структуры его генома или генотипа его

родителей. Возможно ли это? Такая постановка вопроса напоминает

рассуждения философов-детерминистов о предсказании любого события в

мире при наличии полных знаний об исходных условиях, в которых оно

происходит, а также о причинно-следственных связях между явлениями.

История науки решила эту проблему не в пользу детерминистов. Выбор путей

перехода сложной физической системы в альтернативные состояния часто

бывает случайным. И в этом отношении живой организм, по-видимому, не

является исключением.

Неопределенность преобразования генома в индивидуальном

развитии.

Неопределенность понятия гена.

Случайность и необходимость генетических изменений.

Случайность и необходимость в экспрессии генов.

Конечный результат экспрессии генов предопределен.

Будущее трансгеноза и генотерапии. Это будет. И совершенно

безразлично - хотим мы этого или нет.

Большинство физиологических моделей, в которых делается попытка

описания регуляторных воздействий на промежуточные или конечные

результаты экспрессии генов на клеточном или организменном уровне, носят

качественный характер. Это определяется необычайной сложностью даже

самых простых биологических (а следовательно и генетических) объектов

исследования. Такое состояние дел не может удовлетворить нас,

817

воспитанников школы физико-химической биологии.

Регуляция экспрессии генов: информационные сети

Все меньше надежды на простоту, подвижный мобиль


Дата добавления: 2015-08-29; просмотров: 22 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.009 сек.)







<== предыдущая лекция | следующая лекция ==>