Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Применение. Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях

Электронно-лучевое напыление. | Ионно-плазменное напыление. Диодная система. | Установка ионно-плазменного напыления | Трехэлектродная система распыления | Вакуумно-дуговое напыление. | Процесс | Оборудование | Магниторазрядные манометры. | Магниторазрядные насосы | Применение плазмы для очистки поверхностей. |


Читайте также:
  1. Анксиолитики (транквилизаторы). Применение их в психиатрии и соматической медицине.
  2. Б) «Применение подразделений, частей и соединений со средствами
  3. Билет 34. Применение права – особая форма реализации права. Понятие и основные черты.
  4. Боевые действия с применением оружия массового поражения
  5. В 1997 году в американских школах произошло около 11 000 случаев насилия с применением оружия.
  6. Виды наказаний, назначаемых несовершеннолетним. Освобождение от уголовной ответственности с применением принудительных мер воспитательного воздействия.(Дмитриев)
  7. Внутривенное применение барбитуратов противопоказано

Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применяемых для усиления слабых фотоэлектрических токов. Кроме того, оно используется в электронной литографии, оказываясь основным фактором засвечивания резиста.

49. Электрон в твёрдом теле, работа выхода.

Электрон в твёрдом теле заведомо находится в связанном состоянии, согласно общим положениям квантовой теории его энергия должна квантоваться, то есть собственные значения гамильтониана должны быть дискретны. Мы увидим сейчас, как она квантуется. Напишем гамильтониан:

Потенциальная энергия выглядит, конечно, сложным образом: это потенциальные ямы в окрестности атомов, и её не только ядра создают, там и все электроны. Выражение для гамильтониана задать очень сложно, надо учитывать взаимодействие электронов между собой, взаимодействия с ядрами, взаимодействие ядер между собой…, но нам это не важно, нам важно одно – эта функция периодическая. Напишем уравнение на собственные значения гамильтониана, где функция имеет такой вид :

или

Для каждого имеются значения , при которых это уравнение имеет решение, и тогда каждому будут соответствовать собственные функции . Таким образом, стационарные состояния электронов в металле задаются двумя переменными вектором и числом n, им отвечает функция и энергия . Напишем окончательно так:

 
 

Вот главный результат от всей этой науки, и всё это добыто как следствие трансляционной инвариантности решётки (вся физика переходит в себя при сдвигах с определённым вектором ). Что мы получаем? Вот у нас энергетическая шкала E, возможные значения энергии определяются величинами . Фиксируем n, получаем какую-то функцию от , которая имеет минимальное значение и максимальное. n = 2, мы опять имеем полосу энергий, при каком-то значении она минимальна, при каком-то значении она максимальна. И в результате мы получаем, что энергия электронов в металле может лежать в пределах, так называемых, энергетических зон.

 

Для малых значений n эти зоны не перекрываются, но при больших значениях n они начинают перекрываться. Ещё более детальный анализ показывает, что имеются уровни энергий для электрона в атоме, когда эти атомы построятся в решётку, то эти уровни энергий расщепляются на зоны (рис. 4.2). Число уровней, на которые расщепляется начальный, равно 2 N, где N – число атомов.

Чтоб с этим кончить, какие значения принимает вектор ? В прошлый раз мы обсуждали понятие обратной решётки, вектор имеет размерность обратной длины, значит вектор это вектор, принадлежащий обратной решётке. Все значения вектора в пределах элементарной ячейки отвечают определённым состоянию, если мы переходим в соседнюю ячейку, то там все состояния повторяются. Поэтому, если – трансляционный вектор обратной решётки, то выполняются условия: , .

Центр пакета движется по классическому закону, ширина пакета не зависит от времени: С помощью быстрых дискриминаторов получаются сигналы таймирования, которые поступают на стартовый и стоповый входы ВАКа. С помощью временных одноканальных анализаторов выбирается энергетический диапазон. Если сигналы в первом и втором каналах соответствуют выбранным энергетическим диапазонам, и они совпадают в пределах выбранного в схеме совпадений времени, стробирующие сигналы от схемы совпадения открывают выход ВАКа.

Работа выхода — разница между минимальной энергией (обычно измеряемой в электрон-вольтах), которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела, и энергией Ферми. Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам (чтобы электрон прошёл весь двойной слой), но достаточно близко по сравнению с размерами макроскопических граней кристалла. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных кристаллографических ориентаций поверхности оказывается различной.

При удалении электрона на бесконечность его взаимодействие с зарядами, остающимися внутри твёрдого тела приводит к индуцированию макроскопических поверхностных зарядов (при рассмотрении полубесконечного образца в электростатике это называют «изображением заряда»). При перемещении электрона в поле индуцированного заряда совершается дополнительная работа, которая определяется диэлектрической проницаемостью вещества, геометрией образца и свойствами других поверхностей. За счет этого полная работа по перемещению электрона из любой точки образца в любую другую точку (в том числе и точку бесконечности) не зависит от пути перемещения, то есть от того, через какую поверхность был удален электрон. Поэтому в физике твёрдого тела эта работа не учитывается и не входит в работу выхода.

ИЛИ

Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появлевния работы выхода:
1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла электронное облако, плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10√10≈10√9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:
дельта фи=А/е
где е ≈ заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия свободного электрона внутри металла равна ≈еDj и является относительно вакуума отрицательной. Исходя из этого можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А.

 


Дата добавления: 2015-08-18; просмотров: 57 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Вторично-электронная эмиссия.| Генераторные лампы.

mybiblioteka.su - 2015-2024 год. (0.008 сек.)