Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Коррозия металлов. Защита металлов от коррозии



Читайте также:
  1. IV. КОРРОЗИЯ МЕТАЛЛОВ
  2. THORN; возможность протекания процесса коррозии, но не дает реальных представлений о скорости коррозии.
  3. Активная защита помещений от виброакустической разведки. Классификация методов, требования к специальному составу помех. Ограничения применения
  4. Анодная защита.
  5. Атмосферная коррозия и защита трубопроводов от неё
  6. Атмосферная коррозия металлов
  7. Атмосферная коррозия.

Лабораторная работа № 13

Цель: изучение условий возникновения коррозионных микроэлементов, их моделей, а так же влияния различных факторов на скорость электрохимической коррозии металлов.

Оборудование: металлические пластины – стальная, свинцовая, медная, цинковая, алюминиевая, нержавеющей стали; ферроксилининдикатор, бумажный фильтр, наждачная бумага, U-образная трубка, милливольтметр, хлорид натрия (кристаллический), 0,1 М раствор H2SO4, раствор сульфата меди (II), раствор K3[Fe(CN)6], конц. HNO3, раствор HCI, 0,4 М раствор уксусной кислоты, раствор иодида калия, раствор 3% NaCI, раствор для воронения (на 1 литр 600 г NaOH и 60 г NaNO2), пробирки, дистиллированная вода.

 

ТЕОРЕТИЧЕСКИЕ ПОЯСНЕНИЯ

 

Коррозией называют процесс разрушения металла в результате химического или электрохимического воздействия окружающей среды. Скорость коррозии выражают либо через потерю массы образца в единицу времени на единицу площади поверхности, либо через уменьшение толщины металла в единицу времени.

По характеру разрушения металла различают равномерную и местную коррозию. Равномерная коррозия распределяется по всей поверхности металла, а местная коррозия сосредоточена на отдельных участках

По механизму коррозионного процесса различают химическую или электрохимическую коррозию. Химическая коррозия характерна для сред не проводящих электрический ток. В процессе химической коррозии происходит прямое взаимодействие металла с окислителем.

Электрохимическая коррозия возникает в средах, обладающих ионной проводимостью. В этом случае процесс коррозии является анодным растворением металла под влиянием катодного восстановления окислителя. Наиболее распространенными окислителями в коррозионном процессе являются ионы водорода и молекулы кислорода. Коррозия с участием ионов водорода называется коррозией с выделением водорода или коррозией с водородной деполяризацией. В наиболее простом виде электродные процессы могут быть представлены уравнениями:

Me - ne- → Men+

2H+ +2e → H2

Коррозия с выделением водорода возможна, если потенциал водородного электрода положительнее потенциала металла. Скорость коррозии в этом случае определяется скоростью реакции выделения водорода, зависящей от природы металла и вида поверхности, на которой выделяется водород. Скорость коррозии зависит так же от рН и температуры раствора, с которым реагирует металл

Коррозия с участием кислорода называется коррозией с поглощением кислорода или коррозией с кислородной деполяризацией. В наиболее простом виде электродные процессы могут быть представлены уравнениями:

Me - ne- → Men+

O2 + 2H2O + 4e- → 4OH

Коррозия с поглощением кислорода возможна, если потенциал кислородного электрода положительнее потенциала металла. Скорость коррозии в этом случае обычно определяется скоростью диффузии кислорода и возрастает при перемешивании раствора и увеличении концентрации растворенного кислорода.

На основе понимания механизма электрохимической коррозии разработаны разнообразные способы борьбы с ней.

Легирование – это введение в состав сплава компонентов, повышающих устойчивость металлов к коррозии. Например, в качестве легирующих добавок к железу применяют никель и хром (нержавеющая сталь).

В некоторых случаях скорость коррозии лимитируется анодными реакциями. Обычно это наблюдается у металлов способных к пассивации, таких как алюминий, титан, хром, никель, тантал и др. Пассивностью металла называют состояние повышенной коррозионной устойчивости, вызываемое торможением анодного процесса. Пассивация обычно обусловлена образованием на поверхности металла защитных пленок.

Поверхность металла можно защитить покрытиями, которые бывают нескольких видов:

- неметаллические покрытия (лаки, краски, эмали);

- покрытия, образующиеся в результате химической обработки поверхности металла (например, воронение стали);

- металлические покрытия, которые подразделяются на анодные (покрытие более активным металлом, образующим устойчивые к коррозии оксидные пленки) и катодные (покрытие менее активным металлом).

При повреждении анодного покрытия будет анодно растворяться само покрытие, а не основной металл. При повреждении катодного покрытия растворяется основной металл, а не металл покрытия.

В некоторых случаях в коррозионную среду вводят ингибиторы (замедлители) коррозии.

Электрохимическая защита применяется в средах с хорошей ионной проводимостью, например, морская вода, почва. Существует несколько видов электрохимической защиты:

- протекторная защита – присоединение к защищаемому изделию большого листа из более активного металла, который выступает в качестве анода и окисляется, материал изделия выступает в роли катода, он защищен от коррозии;

- катодная защита – защищаемая деталь присоединяется к отрицательному полюсу внешнего источника тока и становится катодом, в качестве анода используются куски железа, которые присоединяются к положительному полюсу источника тока, при этом подвергаясь анодному окислению;

- анодная защита – защищаемое изделие подключается к положительному полюсу внешнего источника тока, при этом происходит пассивация защищаемого металла.

 

МЕТОДИКА ПРОВЕДЕНИЯ ОПЫТОВ

 

Опыт 1: Электрохимическая неоднородность поверхности стали

 

Для проведения опыта зачистите стальную пластинку наждачной бумагой, промойте проточной водой и высушите фильтровальной бумагой. Затем положите на пластинку бумажный фильтр, смоченный ферроксилининдикатором (100 мл Н2О + 3 г NaCI + K3[Fe(CN)6] + несколько капель фенолфталеина).

Через 2-3 минуты опишите изменение цвета фильтровальной бумаги, форму и распределение пятен. Объясните наблюдения и, используя значения потенциалов электродных реакций запишите уравнения этих реакций.

 

Опыт 2: Влияние природы контактирующих металлов на скорость коррозии железа

 

В U-образную трубку залейте на 1/2 объема 0,1 М раствор серной кислоты. Металлические пластины тщательно зачистите и промойте дистиллированной водой. В одно колено трубки поместите стальную пластинку во второе медную. С помощью милливольтметра определите напряжение элемента. Повторите опыт со свинцовой пластинкой.

При оформлении результатов опыта запишите уравнения катодного и анодного процессов, а также суммарное уравнение реакции. Приведите схему коррозионного элемента.

Опыт 3: Активирующее действие ионов хлора

 

В две пробирки налейте (1/2 объема) раствор сульфата меди, подкисленный серной кислотой. В одну из пробирок добавьте хлорид натрия. Затем в обе пробирки поместите алюминиевую проволочку. Наблюдайте, в какой из пробирок интенсивнее выделяется газ.

Запишите уравнения анодного катодного и суммарного процессов, приведите схему коррозионного элемента. Объясните механизм влияния ионов хлора на скорость реакции.

 

Опыт 4: Обнаружение микрогальванических элементов на поверхности металлов.

 

Железную пластинку тщательно зачистить наждачной бумагой, промыть водой и высушить полоской фильтровальной бумаги. На поверхность пластинки нанести пипеткой в разных местах две капли 3% раствора NaCI.

С помощью милливольтметра обнаружить наличие электрического тока. Для этого необходимо одним электродом прикоснуться к поверхности пластинки под каплей, а другим прикоснуться к поверхности соседней капли. Повторить опыт с алюминиевой и цинковой пластинками. Дать объяснение о причинах возникновения электрического тока.

 

Опыт 5: Оксидирование железа (воронение).

 

Железную пластинку (гвоздь) зачистить наждачной бумагой, закрепить на тонкой проволоке и протравить в соляной кислоте (1:1), затем промыть водой. В стаканчике нагреть 100 мл раствора, содержащего на 1 литр 600 г NaOH и 60 г NaNO2 и опустить в него подготовленный железный образец. Через 10-15 минут извлечь его из рабочего раствора, промыть водой и наблюдать появление на поверхности вороной окраски.

Опыт 6: Легирование металла

 

В две пробирки налейте (1/2 объема) воды и добавьте 2-4 мл раствора серной кислоты и 2-4 капли раствора K3[Fe(CN)6]. В одну пробирку поместите зачищенную наждачной бумагой и промытую водой стальную пластинку, а в другую – пластинку из нержавеющей стали (незачищенную). Отметьте изменение цвета раствора через 5 минут и количество выделяющихся пузырьков газа в единицу времени.

Объясните причину различного поведения пластинок в растворе кислоты.


Дата добавления: 2015-07-11; просмотров: 78 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.008 сек.)