Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Миноры и алгебраические дополнения.

Читайте также:
  1. Алгебраические выражения
  2. Алгебраические Максвелла уравнения
  3. Часть II. Дополнения.

Определение. Если в определителе n -го порядка выбрать произвольно p строк и p столбцов (p < n), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .

Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :

Из строк и столбцов с чётными номерами построим матрицу:

Определитель

называется минором определителя . Получили минор второго порядка. Ясно, что из
можно построить различные миноры первого, второго и третьего порядка.

Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :

.

Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,

т.е.

Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,

причём

(4)

Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :

По формуле (4) получим

 

Для вычисления определителя n -го порядка полезно знать следующую теорему: определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.

(i = 1, 2,..., n)


Дата добавления: 2015-08-21; просмотров: 120 | Нарушение авторских прав


Читайте в этой же книге: Вывод уравнения прямой | Уравнение прямой, проходящей через точку, перпендикулярно заданному вектору | Доказать условия параллельности и перпендикулярности прямых на плоскости и в пространстве | Общее уравнение плоскости | Вывод уравнения плоскости, проходящей через точку, перпендикулярно вектору, и проходящей через 3 точки. | Параметрические и канонические уравнения прямой. | Линейные операции над векторами: определения, свойства | Базис, теорема о существовании и единственности разложения вектора по базису | Определение и свойства скалярного произведения векторов | Теорема о выражении скалярного произведения через координаты векторов-сомножителей |
<== предыдущая страница | следующая страница ==>
Понятие определителя n-го порядка| Решение линейных систем по формулам Крамера. Исследование линейных систем.

mybiblioteka.su - 2015-2024 год. (0.009 сек.)