Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Билет№29 Нуклеиновые кислоты. Роль ДНК и РНК в реализации наследственной информации в клетке. Доказательства наследственной роли ДНК (опыты Ф.Гриффитса и О.Эвери)

Читайте также:
  1. DПринципы dреализации dгосударственных dгарантий dгражданских dслужащих
  2. DПринципыdреализацииdгосударственныхdгарантийdгражданскихdслужащих
  3. F48.1 Синдром деперсонализации-дереализации.
  4. II. Основные цели и задачи, сроки и этапы реализации подпрограммы, целевые индикаторы и показатели
  5. II. Приоритеты и цели реализации Программы
  6. III. Информация об оказываемых услугахпо реализации туристского продукта
  7. III. Правовая охрана нераскрытой информации.

Нуклеи́новая кисло́та (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. В клетке ДНК содержится главным образом в ядре, а РНК — в цитоплазме. В качестве азотистых оснований в состав нуклеотидов входят пуриновые и пиримидиновые основания (основаниями они названы за свои основные свойства, т.е. способность взаимодействовать с кислотами с образованием солей). ДНК содержит два пурина — а'денин (А) и гуанин (Г) и два пиримидина — цитозин (Ц) и тимин (Т). В состав РНК входят те же самые основания, только вместо тимина — урацил (У).
Таким образом, в составе нуклеиновых кислот находятся четыре типа нуклеотидов, различающихся между собой лишь азотистыми основаниями. Причем в ДНК число пуринов всегда равно числу пиримидинов и число А равно числу Т, а число Г числу Ц. Эта особенность связана со структурой молекулы ДНК. Впервые модель молекулы ДНК была предложена в 1953 г. американским ученым-химиком Д. Уотсоном и английским биохимиком Ф. Криком. Согласно этой модели, молекула ДНК состоит их двух спирально закрученных вокруг друг друга нитей.

Способность клеток поддерживать высокую упорядоченность своей организации зависит от генетической информации, которая сохраняется в форме дезоксирибонуклеиновой кислоты (ДНК). Раскрытие роли ДНК в передаче наследственных свойств представляется одним из основных достижений современной биологии. В 1944 г. О. Эвери доказал, что именно ДНК ответственна за изменение (трансформацию) организмов. Это было показано в экспериментах с двумя формами бактерий (пневмококков). Одна из них обладала способностью образовывать капсулу и вызывать заболевание. Вторая форма не образовывала капсулы и не вызывала заболевания. Оказалось, что после проникновения ДНК, выделенной из вирулентных (вызывающих заболевание) клеток, некоторое количество клеток невирулентной формы образовало капсулу, причем эта способность передавалась по наследству. ДНК—это полимер, мономерами которого являются дезоксирибонуклеотиды. В их состав входят углевод дезоксирибоза, фосфорная кислота и азотистые основания четырех типов: два пуриновых — аденин и гуанин и два пиримидиновых — тимин и цитозин. Образование полинуклеотидных цепочек ДНК происходит из трифосфонуклеотидов. Синтез ДНК идет от 5' к 3' концу и катализируется специальными ферментами. Главнейшие из них ДНК-полимеразы, которые последовательно наращивают цепь ДНК, присоединяя к ней дезоксирибонуклеотидные звенья в направлении 5' — к 3'. Именно ДНК-полимеразы на каждом шаге выбирают нужный мономер из четырех, тот, который комплиментарен мономеру материнской цепи ДНК. Однако для начала работы ДНК-полимераз необходима полинуклеотидная цепь рибонуклеиновой кислоты (РНК), называемая затравка. РНК-затравку синтезирует из рибонуклеотидтрифосфатов фермент ДНК-праймаза. В синтезе принимают участие и другие ферменты. ДНК-хеликазы разрывают цепи ДНК, что дает возможность ДНК-полимеразе осуществлять процесс синтеза. ДНК-топоизомеразы раскручивают цепи ДНК и молекулы дестабилизирующего белка, который не позволяет сомкнуться одиночным цепям ДНК. Фермент ДНК-лигаза осуществляет сшивку двух концов цепочки ДНК. Таким образом, в результате совместного действия многих белков осуществляется процесс репликации ДНК, лежащий в основе размножения и развития организма, передачи наследственных свойств. В ДНК заложена информация о структуре белков, свойственных каждому живому организму. Участок ДНК, содержащий всю информацию о программируемом белке, называют ген. Однако в настоящее время установлено, что информационное содержание ДНК значительно богаче. Кроме структурных генов, кодирующих первичную структуру белка, существуют регуляторные участки, которые не кодируют структуру биополимеров, но необходимы для реализации наследственной информации. ДНК содержит информацию и о структуре молекул РНК. Детальная расшифровка структуры ДНК открывает возможность для глубокого проникновения в суть эволюционного процесса. Степень родства организмов может быть установлена с большой точностью путем анализа фрагментов их нуклеиновых кислот. Эти исследования были начаты под руководством академика А.Н. Белозерского

 


Дата добавления: 2015-07-15; просмотров: 407 | Нарушение авторских прав


Читайте в этой же книге: Вопрос №11 Мейоз. Особенности 1 и 2 деления. Биологическое значение. Отличия от митоза. | Вопрос №12Прогенез. Сперматогенез. Цитологическая и цитогенетическая характеристика. Строение семенника. Сперматозоид строение и функции. | Вопрос №16Размножение- основное свойство живого. Виды размножения. Формы полового размножение. Гермафродитизм и раздельнополость. Понятие полового диморфизма. | Вопрос №18История развития представлений о наследственности и изменчивости. Фундаментальные свойства живого. | Билет №20. Аллельные гены. Наследование признаков при взаимодействии аллельных генов. Примеры. Множественный аллелизм. Механизм возникновения. | Билет №21. Неаллельные гены. Наследование признаков при взаимодействии неаллельных генов. Примеры. | Билет №23. Генотип как единое целое. Ядерная наследственность. Закономерности наследования внеядерных генов. Цитоплазматическая наследственность у про- и эукариот. | Билет№35 Ген. Классификация. Свойства гена ( дискретность, стабильность, лабильность, специфичность, плейотропия, дозированность действия, пенетрантность, экспрессивность). | Вопрос 48.Генные мутации. Классификация. Наследственные заболевания, связанные с ними. Антимутационные барьеры и механизмы. | Вопрос 52. |
<== предыдущая страница | следующая страница ==>
Билет № 26. Роль наследственных и средовых факторов в определении половой принадлежности организма. Эпигамное, прогамное и сигамное определение пола.| Билет №30 Процесс репликации. Полуконсервативный механизм репликации ДНК. Репликативная вилка. Репликон. Ферменты репликации. Этапы репликации.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)