Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

PCI-Express

PCI-Express – это последовательный интерфейс, нацеленный на использование в качестве локальной шины и имеющий много общего с сетевой организацией обмена данными, в частности, топологию типа «звезда» и стек протоколов

Для взаимодействия с остальными узлами ПК, которые так или иначе обходятся собственными шинами, основной связующий компонент системной платы – Root Complex Hub (узел, являющийся перекрёстком процессорной шины, шины памяти и PCI-Express) – предусматривает систему мостов и свитчей. Логика всей структуры такова, что любые межкомпонентные соединения непременно оказываются построенными по принципу «точка-точка», свитчи-коммутаторы выполняют однозначную маршрутизацию пакета от отправителя к получателю

Соединение между двумя устройствами PCI Express называется link и состоит из одного (называемого 1x) или нескольких (2x, 4x, 8x, 12x, 16x и 32x) двунаправленных последовательных соединений lane. Каждое устройство должно поддерживать соединение 1x.

Таблица 1 - Пропускная способность шины PCI Express с разным количеством связей

Число линий PCI Express (lane count) Пропускная способность соединения (link) в одном направлении Суммарная пропускная способность соединения (link)
  250 Мбайт/с 500 Мбайт/с
  500 Мбайт/с 1 Гбайт/с
  1 Гбайт/с 2 Гбайт/с
  2 Гбайт/с 4 Гбайт/с
  4 Гбайт/с 8 Гбайт/с
  8 Гбайт/с 16 Гбайт/с

PCI Express предполагает:

- возможности «горячей» замены карт (заложены в спецификации, опционально реализуются в серверных системах)

- возможности создания виртуальных каналов, гарантирования пропускной полосы и времени отклика, сбора статистики QoS (Quality of Service – качество обслуживания)

- возможности контроля целостности передаваемых данных (CRC)

- поддержка технологий энергосбережения (ACPI)

 

20. Разъёмы располагаемые на "заглушке" корпуса

 

 

21. Шинно- мостовая архитектура системной платы.

 

В шинно-мостовой архитектуре имеется центральная магистральная шина, к которой остальные компоненты подключаются через мосты. В роли центральной магистрали сначала выступала шина (E)ISA, затем ее сменила шина PCI. Шинно-мостовая архитектура чипсетов просуществовала долгое время и пережила много поколений процессоров (от 2-го до 7-го). Перемещение вторичного кэша с системной платы на процессор (Р6 и Pentium 4 у Intel и К7 у AMD) несколько упростило северную часть чипсета — в ней не надо управлять статической кэш-памятью, а остается лишь обеспечивать когерентность процессорного кэша с основной памятью, доступ к которой возможен и со стороны шины PCI.
Шина PCI в роли главной магистрали удержалась недолго: видеокартам с ЗО-акселератором ее пропускной способности, разделяемой между всеми устройствами, оказалось недостаточно. Тогда и появился порт AGP как выделенный мощный интерфейс между графическим акселератором и памятью (а также процессором). При этом задачи северного моста усложнились: контроллеру памяти приходится работать уже на три фронта — ему посылают запросы процессор^), мастера шины PCI (и ISA, но тоже через PCI) и порт AGP. Пропускная способность AGP в режиме 2х/4х/8х составляет 533/1066/2133 Мбайт/с, так что шина PCI по производительности стала уже второстепенной. Однако в шинно-мостовой архитектуре она сохраняет свою роль магистрали подключения всех периферийных устройств (кроме графических). В качестве мощного представителя шинно-мостовой архитектуры можно рассматривать чипсет AMD-
760 (рис. 6.1). Здесь имеются первичная шина PCI на 64 бит и 66 МГц, являющаяся «экватором», и вторичная шина для подключения рядовой периферии.

Рис. 6.1. Шинно-мостовая архитектура на примере AMD-760
Шина, к которой подключается множество устройств, является узким местом по ряду причин. Во-первых, из-за большого числа устройств, подключенных (электрически) к шине, не удается поднять тактовую частоту до уровня, достижимого в двухточечных соединениях. Во-вторых, шина, к которой подключается множество разнотипных устройств (особенно расположенных на картах расширения), обременена грузом обратной совместимости со старыми периферийными устройствами. Например, предусмотренные возможности повышения производительности PCI используются не всегда: расширение разрядности до 64 бит обходится слишком дорого (большое число проводников порождает свои проблемы), а повышение частоты до 66 МГц для шины возможно лишь если все ее абоненты поддерживают эту частоту. Достаточно установить одну «простую» карту PCI, и производительность центральной шины падает до начальных 133 Мбайт/с. То же можно сказать и о PCI-X: достаточно подключить к ней одно устаревшее устройство PCI, и все протокольные усовершенствования будут отменены.

 

22. Назначение, характеристики и параметры накопителей на ЖМД

 

НЖМД - это основное устройство для долговременного хранения больших объемов данных и программ. Другие названия: жесткий диск, винчестер, HDD (Hard Disk Drive). Внешне, винчестер представляет собой плоскую, герметически закрытую коробку, внутри которой на общей оси находятся несколько жестких алюминиевых или стеклянных пластинок круглой формы. Поверхность любого из дисков покрыта тонким ферромагнитным слоем (вещество, которое реагирует на внешнее магнитное поле), на нем и хранятся записанные данные. При этом запись проводится на обе поверхности каждой пластины (кроме крайних) с помощью блока специальных магнитных головок. Каждая головка находится над рабочей поверхностью диска на расстоянии 0,5-0,13 мкм. Пакет дисков вращается непрерывно и с большой частотой (4500-10000 об/мин), поэтому механический контакт головок и дисков недопустим.

Запись данных в жестком диске осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля в щели между поверхностью и головкой, что приводит к изменению стационарного магнитного поля ферромагнитных частей покрытия диска. Операция считывания происходит в обратном порядке. Намагниченные частички ферромагнитного покрытия являются причиной электродвижущей силы самоиндукции магнитной головки. Электромагнитные сигналы, которые возникают при этом, усиливаются и передаются на обработку.
В накопителе может быть до десяти дисков. Их поверхность разбивается на круги, которые называются дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт: 512 отведено для записи нужной информации, остальные под заголовок (префикс), определяющий начало и номер секции и окончание (суффикс), где записана контрольная сумма, нужная для проверки целостности хранимых данных. Секторы и дорожки образуются во время форматирования диска. Форматирование выполняет пользователь с помощью специальных программ. На неформатированный диск не может быть записана никакая информация. Жесткий диск можно разбить на логические диски.

Существует огромное количество разных моделей жестких дисков многих фирм, таких как Seagate, Maxtor, Quantum, Fujitsu и т.д. Для обеспечения совместимости винчестеров, разработаны стандарты на их характеристики, определяющие номенклатуру соединительных проводников, их размещение в переходных разъемах, электрические параметры сигналов. Современные накопители могут использовать интерфейсы ATA (AT Attachment, он же IDE — Integrated Drive Electronic, он же Parallel ATA), (EIDE), Serial ATA, SCSI (Small Computer System Interface), SAS, FireWire, USB, Fibre Channel. Характеристики интерфейсов, с помощью которых винчестеры связаны с материнской платой, в значительной степени определяют производительность современных жестких дисков.

Среди других параметров, которые влияют на быстродействие HDD следует отметить следующие:

- емкость кэш-памяти - во всех современных дисковых накопителях устанавливается кэш-буфер, ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт;

- физический размер (форм-фактор) — почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Другие распространённые форматы — 1,8 дюйма, 1,3 дюйма и 0,85 дюйма

- время произвольного доступа (англ. random access time) — от 3 до 15 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5).

- скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об./мин. (серверы и высокопроизводительные рабочие станции).

- надёжность (англ. reliability) — определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). Технология SMART. (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.)

- количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

- потребление энергии — важный фактор для мобильных устройств.

- уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.

- сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки g во включённом и выключенном состоянии.

- среднее время доступа - время (в миллисекундах), на протяжении которого блок головок смещается с одного цилиндра на другой. Зависит от конструкции привода головок и составляет приблизительно 10-13 миллисекунд;

- время задержки - это время от момента позиционирования блока головок на нужный цилиндр до позицирования конкретной головки на конкретный сектор, другими словами, это время поиска нужного сектора.

 

 

23. Оперативная память. SDRAM

 

Предназначена для хранения программ и данных. Обычно рассматривается как временное хранилище, поэтому все данные подвергнуты изменениям необходимо сохранить на запоминающем устройстве хранящий информацию постоянно. так же оперативную память называют устройство с произвольным доступом потому что обращение к данным хранящейся в ней не зависит от порядка расположения. Одним из свойств микросхем динамической памяти является динамическое хранение данных что означает:

1. Возможность неоднократной записи информации в оперативную память.

2. Необходимость постоянного обновления данных.

Существует статическая оперативная память(SRAM)-которая не требует постоянного обновления данных. Термин оперативная память обозначает не только микросхемы которые составляют устройство памяти в системе но включает и такие понятия как: логическое отображение и размещение.

 

Логическое отображение – способ представления адресов памяти на фактически установленных микросхемах. Размещение – расположение информации определённого типа по конкретным адрес памяти системы.

Физически оперативная память представляет собой набор микросхем или модулей которые содержат эти микросхемы которые подключаются к системной плате. Эти модули могут иметь различные характеристики и что бы они функционировали правильно должны быть совместимы с системой в которую устанавливаются. В ПК используются запоминающие устройства 3-х основных типов:

1. ROM (read only memory) – динамическое запоминающее устройство не способная выполнять операции записи.

2. DRAM (dynamic random Access memory)- динамическое запоминающее устройство с произвольным порядком выборки.

3. SRAM (Static random Access memory) – статическая оперативная память.

 

 

SDRAM

Это тип динамической памяти работа которой синхронизируется шиной памяти. SDRAM передает информацию в высокоскоростных пакетах, которые используют высокоскоростной синхронизированный интерфейс, позволяет избежать использование большинства циклов ожидания, не обходимых при работе асинхронной DRAM, поскольку сигналы по которым работает память такого типа синхронизированы с тактовым генератором системной платы. Память SDRAM используется в виде модулей DIMM и как правило быстродействие ей оценивают не в наносекундах а в мегагерцах.

DDR – усовершенствованный стандарт SDRAM. При использовании его скорость передачи данных удваивается, за счет не удвоения тактовой частоты, а за счет передачи данных за один цикл дважды. Первый раз – в начале цикла, второй – в конце цикла. Память DDR SDRAM выполнена в виде 184-х контактных модулей DIMM. Поставляемые модули DIMM памяти DDR SDRAM отличается своим быстродействием и пропускной способность. Обычно работают при напряжении 2,5 Вольта. Габаритные размеры модуля:

· Длина – 133,5 мм

· Высота – 31,86 мм

· Контактные площадки ширина – 1,27 мм; шаг между ними 1,02 мм. С каждой стороны 92 контакта

 

 

Табл. Типы и пропуская способность память DDR SDRAM

Стандарт модуля Тип микросхемы Частота шины Скорость шины в циклах млн/сек Пропускная способность
PC 3200 DDR 400   400 млн. циклов в сек 3200 мб в сек.
PC 3500 DDR 433      
PC 3700 DDR 466      
PC 4300 DDR 533      

Количество циклов данных за такт 2.

Ширина шины – 8 байт.

При установке более быстродействующих модулей памяти производительность ПК как правило не повышается., поскольку система обращается к ней с прежней частотой.

 

24. Тайминги. – это задержка между отправкой команды контроллера памяти и её выполнением, измеренная в тактах шины памяти (т.е. сколько тактов пропускает шина в ожидании выполнения команды).

В основе динамической памяти (DRAM) лежат ячейки, объединенные в двумерные массивы. Такую структуру можно представить в виде решетки с ячейками в её узлах. Чтобы обратиться к одной из них, контроллеру надо знать её адрес. Он состоит из двух компонентов: номера строки и номера столбца. Массивы ячеек с одинаковым количеством строк и столбцов объединяются в банки. Контроллер выбирает необходимый банк и посылает ему адрес строки (сигнал RAS). Доступ к нужной строке занимает некоторое время, т.е тайминг RAS to CAS Delay. Затем посылается адрес столбца (сигнал CAS) и опять ожидается ответ – задержка (тайминг) CAS Latency. Тайминг RAS Precharge показывает время между командой закрытия и повторной активацией строки. Active to Precharge Delay – между командой активации и командой закрытия. И наконец, Command Rate – это минимальное время между подачей любых двух команд.

 

 

25. Хабовая архитектура
С введением высокоскоростных режимов UltraDMA (АТА/66, АТА/100, а затем и АТА/133) связь двухканального контроллера IDE с памятью через шину PCI стала уже слишком сильно нагружать эту шину. Кроме того, появились высокоскоростные интерфейсы Gigabit Ethernet, FireWire (100/200/400/800 Мбит/с) и USB 2.0 (480 Мбит/с). Ответом на эти изменения в расстановке сил стал переход на хабовую архитектуру чипсета. В данном контексте хабы — это специализированные микросхемы, обеспечивающие передачу данных между своими внешними интерфейсами. Этими интерфейсами являются «прикладные» интерфейсы подключения процессоров, модулей памяти, шин расширения и периферийные интерфейсы (АТА, SATA, USB, FireWire, Ethernet). Поскольку к одной микросхеме все эти интерфейсы не подключить (слишком сложна структура и много требуется выводов), чипсет строится, как правило, из пары основных хабов (северного и южного), связанных между собой высокопроизводительным каналом.
Рис. 6.2. Хабовая архитектура на примере чипсета Intel с ICH-6
Северный хаб чипсета выполняет те же функции, что и северный мост шин- но-мостовой архитектуры: он связывает шины процессора, памяти и порта AGP. Однако на южной стороне этого хаба находится уже не шина PCI, а высокопроизводительный интерфейс связи с южным хабом (рис. 6.2). Пропускная способность этого интерфейса составляет 266 Мбайт/с и выше, в зависимости от чипсета. Если чипсет имеет интегрированную графику, то в северный хаб входит и графический контроллер со всеми своими интерфейсами (аналоговыми и цифровыми интерфейсами дисплея, шиной локальной памяти). Чипсеты с интегрированным графическим контроллером могут иметь внешний порт AGP, который становится доступным при отключении встроенного графического контроллера. Есть чипсеты, у которых порт AGP является чисто внутренним средством соединения встроенного контроллера, и внешний графический контроллер к ним может подключаться только по шине PCI.
С появлением PCI-E архитектура не слишком изменилась: северный хаб (мост) вместо порта AGP теперь предлагает высокопроизводительный (8х или 16х) порт, а то и пару портов PCI-E для подключения графического адаптера. Маломощные (1х) порты PCI-E могут предоставляться как северным, так и южным хабами (это решает разработчик чипсета). В последнем случае корневой комплекс PCI-E (см. 14.10) «расползается» по двум микросхемам чипсета, связанным между собой «фирменным» интерфейсом. Использования PCI-E как единой коммуникационной базы внутри чипсета пока не наблюдается.

 

 

26. HDD. Устройство дорожек и секторов

 

 

27. Различия реализации классической архитектуры и АМD-K8

 

 

28. Конфигурация материнской платы

 

29. Архитектура Hyper Transport.

Технология (архитектура) HyperTransport (НТ) задумывалась как альтернатива шинно-мостовой архитектуре системных плат. Технология разработана компаниями AMD, Apple Computers, Broadcom, Cisco Systems, NVIDIA, PMC- Sierra, SGI, SiPackets, Sun Microsystems, Transmeta. Первый релиз вышел в 2001 году, в 2003-м — версия 1.10. Прежнее кодовое название — LDT (Lighting Data Transport).
Основная идея НТ — замена шинного соединения компонентов (периферийных устройств) системой двухточечных встречно направленных соединений. При этом достижима более высокая тактовая частота интерфейсов, что обеспечивает их более высокую (по сравнению с шиной) пропускную способность. Структурная схема компьютера архитектуры НТ приведена на рис. 6.3. Главный мост (host bridge) обеспечивает связь НТ с ядром — процессором и памятью. Периферийные контроллеры, требующие высокой пропускной способности, реализуются в виде НТ-туннелей. В архитектуре предусматривается и мостовая связь с шиной PCI.
Архитектура НТ обеспечивает все типы транзакций процессоров и устройств PCI, PCI-X и AGP, используемые в PC. Транзакции выполняются в виде серий передач пакетов различных типов. В традиционных транзакциях целевое устройство идентифицируется адресом: чтение и запись в пространстве памяти, ввод-вывод в конфигурационном пространстве, а также считывание вектора прерывания из PIC 8259А и специальные циклы PCI (см. 14.2). Для унификации транзакций все пространства отображаются на единое 40-битное пространство адресов (объем 1 Тбайт), адрес передается в управляющих пакетах. Первые 1012 Гбайт пространства выделены для отображения обычного пространства памяти (для ОЗУ и ввода-вывода, отображенного на память). В оставшейся 12-гигабайтной области размещаются конфигурационное пространство (32 Мбайт), пространство ввода-вывода (32 Мбайт), память SMM, пространства адресов для выдачи векторов и подтверждения прерываний; 54 Мбайт остались в резерве. Транзакции НТ обеспечивают программное взаимодействие процессора с устройствами, прямой доступ к памяти и одноранговое взаимодействие устройств с адресацией в описанном комбинированном пространстве. Существует сетевое расширение спецификации, поддерживающее обмен сообщениями (как в сетях), причем возможны и широковещательные сообшения.
Транзакции выполняются расщепленным способом: инициатор посылает пакет-запрос и данные для транзакции записи, целевое устройство посылает пакет- ответ и данные для транзакций чтения. Технология НТ обеспечивает упорядоченность выполнения транзакций; есть возможность регулировать качество обслуживания (Quality of Service, QoS), что позволяет организовывать изохронные передачи.
Рис. 6.3. Архитектура HyperTransport
Сигнализация прерываний в НТ реализуется тоже пакетами: устройство посылает сообщегше — выполняет транзакцию записи по адресу, указанному ему при конфигурировании (аналогично MSI на шине PCI). Обработчик прерывания посылает сообщение о завершении обработки прерывания (End Of Interrupt, EOI), делая запись по другому адресу, связанному с данным устройством. Такой механизм сигнализации запросов и подтверждений позволяет преодолеть неэффективность традиционого для PC механизма прерываний с помощью специальных линий IRQ.
Архитектура НТ основана на двусторонней пакетной передаче данных между парой устройств. Устройство НТ может выступать в роли инициатора или/и целевого устройства транзакций. По топологическим свойствам различают несколько типов устройств НТ:
¦ Туннель (tunnel) — устройство с двумя интерфейсами НТ; такие устройства могут собираться в цепочку (daisy chain), образующую логическую шину. Цепочка подключается к хосту (процессору с главным мостом), отвечающему за конфигурирование всех устройств и управляющему работой НТ.

¦ Мост (bridge) — устройство, соединяющее одну логически первичную шину (подключенную к хосту) с одной или несколькими логически вторичными шинами (цепочками). Мост имеет набор регистров, информация которых позволяет управлять распространением транзакций между этими шинами (аналогично мосту PCI).
¦ Коммутатор (switch) — устройство с несколькими интерефейсами НТ, по структуре аналогичное нескольким мостам PCI, подключенным к одной (внутренней) шине.
¦ Тупик, или пещера (cave) — устройство с одним интерфейсом НТ.
Хост (host) — это «хозяин шины», подключающийся к ней через главный мост и выполняющий функции конфигурирования (аналогично и совместимо с PCI). Основной вариант топологии — цепочка устройств-туннелей, подключенная верхним концом к хосту. Каждый интерфейс НТ состоит из двух независимых частей: передатчика и приемника. Каждому устройству при конфигурировании выделяются свои области в адресном пространстве. В цепочке устройства-тун- нели транслируют пакеты сверху вниз (нисходящий трафик) и снизу вверх (восходящий). Если в нисходящем управляющем пакете устройство обнаруживает свой адрес, оно «понимает», что обращаются к нему, и принимает соответствующую информацию (управляющие пакеты и данные). Восходящий трафик туннель транслирует «вслепую». На полученные запросы устройство отвечает посылкой пакетов вверх, включая их в транслируемый восходящий трафик. Таким образом обеспечивается программное взаимодействие процессора с устройствами. Собственные запросы на доступ к памяти устройство посылает тоже вверх, как и запросы (обращения) к другим устройствам (независимо от положения целевого устройства — выше или ниже в цепочке). Доставку пакета адресату обеспечивает главный мост: он разворачивает пакет, принятый из це- цочки (адресованный не к ОЗУ), и посылает его вниз — так организуется одноранговое взаимодействие. На пакет, адресованный к ОЗУ, главный мост организует ответ от контроллера памяти, реализуя таким образом прямой доступ к памяти.
Возможны и более сложные топологии, например дерево (с мостами), позволяющее подключать больше тупиковых устройств. Возможна и цепочка с двумя хостами (на обоих концах), которая может использоваться двояко. В первом варианте обеспечиваются избыточность (дублирование функций хоста) и разделяемость узлов (доступность обоим хостам). При этом один главный мост становится ведущим («настоящим», разворачивающим одноранговые запросы и ответы), через него обеспечивается конфигурирование узлов. Другой мост становится ведомым — он является лишь средством связи второго хоста (процессора) с узлами. Программно при конфигурировании (инициализации НТ) роли мостов можно поменять. Во втором варианте одно из устройств разбивает шину (перестает работать туннелем), в результате получаются два хоста со своими короткими цепочками собственных (неразделяемых) устройств. С применением коммутаторов можно строить и более сложные, но беспетлевые топологии.
Технология HyperTransport предназначена для соединения компонентов компьютеров и коммуникационной аппаратуры, но только в пределах платы — елоты и карты расширения технологией НТ не рассматриваются. Для передачи информации используются два встречных однонаправленных набора высокоскоростных сигналов:
¦ CAD[n:0] — шина управления (control), адреса (address) и данных (data) разрядностью 2, 4, 8, 16 или 32 бита, причем во встречных направлениях может использоваться различная разрядность. У передатчика сигналы CADOUTx, у приемника — CADINx;
¦ CTL — сигнал-признак, позволяющий различать передачи пакетов управляющей информации и данных. У передатчика сигнал CTL0UT, у приемника — CTLIN;
¦ CLK — сигнал синхронизации (по фронту и спаду), для каждого байта CAD используется своя линия CLK (их может быть 1, 2 или 4). У передатчика сигналы CLKOUTx, у приемника — CLKINx.
Сигналы передаются по дифференциальным парам проводов с импедансом 100 Ом, сигналы — LVDS (низковольтные дифференциальные, уровень1,2 В). Частота синхронизации 200, 300, 400, 500, 600, 800 и даже 1000 МГц обеспечивает физическую скорость передачи 400, 600, 800, 1000, 1200, 1600 и 2000 МТ/с (миллионов передач в секунду), что при самых больших разрядности (32 бит) и частоте обеспечивает пиковую скорость передачи данных до 8 Гбайт/с. В первой версии предельная частота была 800 МГц, что давало скорость 6,4 Гбайт/с. Поскольку пакеты могут передаваться одновременно в обоих направлениях, можно говорить о суммарной пропускной способности 12,8 или 16 Гбайт/с.
Помимо сигналов для передачи пакетов, имеются сигналы сброса и инициализации (PWR0K — признак стабильности питания и синхронизации, RESET# — сброс цепочки устройств), а также управления энергопотреблением (LDTST0P# — разрешение/запрет использования соединения при смене состояний системы, LDTREQ# — индикатор активности соединения или его запроса устройством). Эти сигналы «медленные», их формируют передатчики с открытым стоком (open-drain), все одноименные сигналы цепочки объединяются, выполняя функцию «монтажного ИЛИ». Уровни сигналов — LVTTL/CMOS (2,4 В).
По замыслу разработчиков, НТ должна стать архитектурой построения PC, однако пока что используется лишь технология НТ. В вышеприведенном примере главный мост реализует интерфейс AGP. В 64-битных процессорах AMD, в которых применяется НТ, главный мост размещается в самом процессоре. При этом у процессора оказывается два интерфейса: интерфейс памяти (пока что DDR SDRAM) и НТ в качестве системной шины. В распространенных чипсетах (от VIA, SiS) к интерфейсу НТ подключается только северный хаб, обеспечивающий лишь интерфейс подключения графического адаптера — AGP или PCI-E. Южный хаб соединяется с северным собственным интерфейсом, так что использования НТ как универсальной транспортной структуры для множества компонентов пока не наблюдается.

 

30. HDD. Устройство дорожек и секторов

 

31. Конструктивное исполнение процессоров

 

Во всех современных процессорах имеется кэш (по-английски - cache) - массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти. Тем самым заметно увеличивается общая производительность процессора.

При этом в современных процессорах кэш давно не является единым массивом памяти, как раньше, а разделен на несколько уровней. Наиболее быстрый, но относительно небольшой по объему кэш первого уровня (обозначаемый как L1), с которым работает ядро процессора, чаще всего делится на две половины - кэш инструкций и кэш данных. С кэшем L1 взаимодействует кэш второго уровня - L2, который, как правило, гораздо больше по объему и является смешанным, без разделения на кэш команд и кэш данных. Некоторые десктопные процессоры, по примеру серверных процессоров, также порой обзаводятся кэшем третьего уровня L3. Кэш L3 обычно еще больше по размеру, хотя и несколько медленнее, чем L2 (за счет того, что шина между L2 и L3 более узкая, чем шина между L1 и L2), однако его скорость, в любом случае, несоизмеримо выше, чем скорость системной памяти.

Процессорная (иначе - системная) шина, которую чаще всего называют FSB (Front Side Bus), представляет собой совокупность сигнальных линий, объединенных по своему назначению (данные, адреса, управление), которые имеют определенные электрические характеристики и протоколы передачи информации. Таким образом, FSB выступает в качестве магистрального канала между процессором (или процессорами) и всеми остальными устройствами в компьютере: памятью, видеокартой, жестким диском и так далее. Непосредственно к системной шине подключен только CPU, остальные устройства подсоединяются к ней через специальные контроллеры, сосредоточенные в основном в северном мосте набора системной логики (чипсета) материнской платы. Хотя могут быть и исключения - так, в процессорах AMD семейства К8 контроллер памяти интегрирован непосредственно в процессор, обеспечивая, тем самым, гораздо более эффективный интерфейс память-CPU, чем решения от Intel, сохраняющие верность классическим канонам организации внешнего интерфейса процессора. Основные параметры FSB некоторых процессоров приведены в табл.2:

 

Таблица 2 - Основные параметры FSB

Процессор частота FSB, МГц Тип FSB Теоретическая пропускная способность FSB, Мб/с
Intel Pentium III 100/133 AGTL+ 800/1066
Intel Pentium 4 100/133/200 QPB 3200/4266/6400
Intel Pentium D 133/200 QPB 4266/6400
Intel Pentium 4 EE 200/266 QPB 6400/8533
Intel Core 133/166 QPB 4266/5333
Intel Core 2 200/266 QPB 6400/8533
AMD Athlon 100/133 EV6 1600/2133
AMD Athlon XP 133/166/200 EV6 2133/2666/3200
AMD Sempron   HyperTransport  
AMD Athlon 64 800/1000 HyperTransport 6400/8000

 

Комплектация OEM (Original Equipment Manufacturer) предназначена в основном для сборщиков готовых ПК и подразумевает поставку только собственно устройства, зачастую без индивидуальной упаковки и драйверов (и без какой-либо сопроводительной документации - это точно). А Box - коробочный вариант комплектации устройства, предназначенный для розничной продажи. В отношении процессоров боксовая комплектация, наряду с красочной упаковкой, подразумевает наличие "кулера" - штатной системы охлаждения, а также, в большинстве случаев, гораздо большую гарантию - 36 месяцев против 12 для ОЕМ-процессоров. Но достоинство последних - низкая цена, да и возможностей "боксового кулера" бывает достаточно только для работы процессора в штатном режиме (впрочем, иногда и не хватает). Тепловой интерфейс (термоинтерфейс) - это специальная прокладка между ядром процессора и подошвой радиатора, служащая для улучшения отвода тепла от процессора. Физически термоинтерфейс может иметь вид или наклейки из какого-либо теплопроводящего материала, или тонкого слоя термопасты, нанесенного на подошву радиатора на месте его соприкосновения с корпусом процессора.

Маркировка МП фирмы Intel.

Трехзначный процессорный номер (Processor Number, или просто PN) у Intel, используемый с 2004 года вместо тактовой частоты в обозначении процессоров ряда Pentium/Celeron, в отличие от рейтинга процессоров AMD, не является технической характеристикой процессора и не имеет отношения к его производительности. Фактически, это условное обозначение конкретной модели процессора, лишь только первая цифра PN несет определенную смысловую нагрузку - указывает на серию процессора, хотя и две остальные цифры, в принципе, тоже кое-что могут сказать. Например, процессор с большими цифрами несколько производительнее (или при той же производительности имеет какие-либо дополнительные навороты) другого процессора с меньшими цифрами, но все это исключительно в рамках одной и той же серии. Для прямого сравнения процессоров различных продуктовых линеек, PN использовать нельзя. В процессоры нового семейства Core Intel ввела новую пятизначную буквенно-цифровую маркировку. В данном обозначении первая буква индекса обозначает уровень энергопотребления (TDP - Thermal Design Power, тепловой пакет) чипа. На этом месте могут быть следующие символы:

· U - Ultra low voltage (TDP - ниже 15 Вт);

· L - Low voltage (TDP - от 15 до 25 Вт);

· T - sTandard mobile (TDP - от 25 до 55 Вт);

· E - standard dEsktop (TDP - от 55 до 75 Вт);

· X - eXtreme (TDP - выше 75 Вт).

Остальные четыре цифры обозначают модификацию процессора, как и у процессоров Pentium 4: чем больше индекс, тем производительнее процессор.

Новая система маркировки МП фирмы AMDпредполагает, наряду с традиционным обозначением бренда и класса, еще и буквенно-цифровой код модели (см. табл.2).

Таблица 2 –Маркировка МП

Бренд Класс Модель
Phenom FX -
Phenom X4 GP-7xxx
Phenom X2 GS-6xxx
Athlon X2 BE-2xxx
Athlon X2 LS-2xxx
Sempron - LE-1xxx

1. Первый символ в названии модели процессора определяет его класс:

o G - High-end;

o B - Mainstream;

o L - Low-End.

2. Второй символ определяет энергопотребление процессора:

o P - более 65 Вт;

o S - 65 Вт;

o E - менее 65 Вт (класс Energy Efficient).

3. Первая цифра обозначает принадлежность процессора к определенному семейству:

o 1 - одноядерные Sempron;

o 2 - двухъядерные Athlon;

o 6 - двухъядерные Phenom X2;

o 7 - четырехъядерные Phenom X4.

4. Вторая цифра будет обозначать уровень производительности конкретного процессора в пределах семейства.

5. Две последние цифры будут определять модификацию процессора.

Таким образом, новейшие двух- и четырехъядерные процессоры станут обозначаться как AMD Phenom X2 GS-6xxx и Phenom X4 GP-7xxx. Экономичные двухъядерники среднего класса - Athlon X2 BE-2xxx, а бюджетные AMD Athlon и Sempron станут именоваться как Athlon X2 LS-2xxx и Sempron LE-1xxx. А пресловутая цифра 64, указывающая на поддержку 64-битной архитектуры, исчезнет из имени процессора Athlon.


Дата добавления: 2015-07-11; просмотров: 208 | Нарушение авторских прав


Читайте в этой же книге: Стандарт ATX | Память типа DRAM | Кэш-память — SRAM | Быстродействие памяти | Картриджи | Активное охлаждение. | Доступ к памяти | Компоненты платы | Клавиатура, оптико-механические манипуляторы | Интерфейсы видеокарт |
<== предыдущая страница | следующая страница ==>
Форм –фактор корпусов| Типы корпусов МП

mybiblioteka.su - 2015-2024 год. (0.027 сек.)