Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Химико-термическая обработка

Читайте также:
  1. Dynamics Range Processing - универсальная динамическая обработка
  2. Автоматизированная обработка учета складских операций и реализации продукции
  3. Аналитическая обработка данных, системы оперативной аналитической обработки (ОLAP).
  4. Базы персонифицированного учета (сбор и обработка индивидуальных сведений, обеспечение их достоверности)
  5. Глава 3. Профессиональная обработка звука. Звук и звуковая волна
  6. Измерения и обработка результатов
  7. Интерфейс CAN: арбитраж, обнаружение и обработка ошибок, скорость передачи и длина сети.

 

Химико-термической обработкой называют поверхностное насыщение стали каким-либо химическим элементом (углеродом, азотом, бором и т. п.) путем его диффузии из внешней среды. Изделие помещают, в среду богатую элементом, и нагревают. При этом происходят следующие процессы:

диссоциация – распад молекул во внешней среде и обра­зование атомов диффундирующего элемента;

адсорбция – осаждение атомов элемента на поверхности стальной детали;

диффузия – проникновение атомов элемента вглубь металла (в поверхностные слои детали).

При химико-термической обработке в стали протекают фазовые превращения, связанные с нагревом и охлаждением, изменяется химический состав и структура поверхностных слоев, что в широких пределах изменяет свойства.

 

 

6.3.1. Операции химико-термической обработки

Цементация стали – операция диффузионного насыщения поверхностного слоя низкоуглеродистой стали углеродом при нагревании выше критических точек в соответствующей среде – карбюризаторе.

При науглероживании, а затем закалке и отпуске поверхностный слой приобретает высокую твердость, износостойкость, в нем образуются остаточные напряжения сжатия. Сердцевина изделия (углерода менее 0,3 %) закалку не воспримет – останется мягкой, пластичной.

Цементации подвергают конструкционные углеродистые и легированные стали с низким содержанием углерода (например, марки 15Х, 18ХГТ, 20ХНМ, 12ХН3А и др.). Этот процесс широко применяется в локомотиво-, станко- и автотракторостроении, инструментальном производстве и т. п.

Цементация в твердом карбюризаторе – наиболее древний способ. В настоящее время используется редко (чаще в единичном и мелкосерийном производстве). Карбюризатор – смесь порошка древесного угля и углекислых солей бария и натрия (10 – 40 %). Детали укладывают в стальной ящик, равномерно пересыпая карбюризатором. Ящик закрывают, помещают в печь и нагревают до 925 – 950°С. Длительность выдержки после нагрева зависит от требуемой глубины слоя (0,5 – 2,0 мм) при содержании в нем углерода до 1,0 – 1,2% (10 ч – для слоя, глубиной в 1 мм). Контроль за процессом ведется по изломам стержней (свидетелей), специально вставляемых в ящик вместе с деталями.

Газовая цементация впервые применена Павлом Петровичем Аносовым в тридцатых годах девятнадцатого столетия на златоустовском заводе. В России впервые внедрена на московском автозаводе имени Лихачева. Ее проводят в печах непрерывного действия. Детали помещают в печь на поддонах, подвесках или в корзинах. В качестве карбюризатора применяют естественные (природные) и искусственные газы. Используют жидкие карбюризаторы (бензол, керосин, синтин), которые подаются в печь через капельницу.

При газовой цементации детали находятся в постоянном контакте с углеродосодержащими газами. При высокой температуре газы диссоциируют с выделением атомарного углерода, который оседает на поверхности стали и диффундирует в глубину детали. При газовой цементации выдержка составляет 4 – 5 ч на 1,0 мм глубины науглероженного слоя.

По сравнению с цементацией в твердом карбюризаторе газовая цементация имеет ряд преимуществ:

нагрев деталей происходит значительно быстрее и сокращается необходимое время выдержки при цементации;

возможность регулировки количества и состава цементирующего газа;

возможность полной механизации и автоматизации процесса;

улучшение условий труда.

Газовая цементация получила широкое распространение в массовом и крупносерийном производстве, где затраты на специальное оборудование экономически целесообразны.

Микроструктура низкоуглеродистой стали после цементации изменяется от поверхности к центру детали (рис. 36). Поверхностная зона (заэвтектоидная) имеет структуру – перлит и цементит, затем идут эвтектоидная зона – структура перлит и переходная (доэвтектоидная) – структура перлит и фер­рит. Чем ближе к сердцевине, тем больше в переходной зоне феррита и меньше перлита. За толщину цементованного слоя принимают расстояние от поверхности до

 
 

середины переходной (третьей) зоны.

 

Рис. 36. Микроструктура цементованной стали

 

Задача цементации – получить высокую поверхностную твердость и износостойкость при вязкой сердцевине – не решается одной цементацией. Цементацией достигается лишь благоприятное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая закалка с низким отпуском, при которой на поверхности получается мартенсит, а в сердцевине сохраняется низкая твердость и высокая вязкость.

Такая термическая обработка обеспечивает твердость поверхностного слоя HRC60 – 64 у углеродистых сталей и HRC58 – 62 у легированных. Твердость сердцевины HRC25 – 35 (в зависимости от состава стали).

Для закалки цементованные детали нагревают до 820 – 850°С с охлаждением в воде. Это обеспечивает измельчение зерна и закалку цементованного слоя, а также частичную перекристаллизацию с измельчением зерна сердцевины. Структура поверхностного слоя – мартенсит с небольшим количеством вторичных карбидов, твердость – HRC56 – 63.

При повышенных требованиях к свойствам деталей применяют двойную закалку или нормализацию и закалку. Первая закалка (или нормализация) – для измельчения зерна и ис­правления структуры перегретой стали (температура 880 – 900°С), вторая закалка (неполная) – для получения мартенсита в поверхностном слое (температура 760 – 780°С).

Цементованные стали после закалки обязательно подвергают низкому отпуску при температуре 160 – 180°С.

Цементация с последующей термической обработкой повышает предел выносливости стальных деталей вследствие образования в поверхностном слое остаточных напряжений сжатия и понижает чувствительность к концентраторам напряжений. Цементованная сталь обладает высокой износостойкостью и контактной прочностью.

Азотирование – операция диффузионного насыщения поверхностного слоя стали азотом, которая резко повышает твердость и износостойкость поверхностного слоя, предел выносливости и сопротивление коррозии.

Азотированию подвергают среднеуглеродистые стали, легированные алюминием, хромом, вольфрамом, молибденом, ванадием (38ХЮ, 38ХМЮА,| 38ХВФА), образующие в поверхностных слоях нитриды легирующих элементов.

Детали, прошедшие улучшение (закалку с высоким от­пуском), нагревают в среде аммиака до 500 – 520°С и вы­держивают 40 – 60 ч. Предварительная термообработка необходима для получения повышенной прочности и вязкости сердцевины изделия. Толщина азотированного слоя 0,3 – 0,6 мм, твердость его HRC54 – 66. Наиболее высокую твердость имеют стали, легированные алюминием.

Износостойкость и предел выносливости азотированной стали выше, чем цементованной и закаленной. После азотирования проводят шлифование, полирование и доводку деталей.

Нитроцементация – операция диффузионного на­сыщения поверхностного слоя стали углеродом и азотом в газовой среде, состоящей из науглероживащего газа и аммиака.

Нитроцементация проводится для углеродистых и легированных сталей при температуре 840 – 860°С. Продолжительность операции 4 – 10 ч, глубина слоя 0,2 – 0,8 мм.

После нитроцементации следует закалка стали либо непосредственно из печи с подстуживанием до 825 – 800°С, реже после охлаждения и повторного нагрева. Отпуск – низ­кий, при температуре 160 – 180°С. Твердость слоя после закалки и отпуска HRC58 – 64. Структура нитроцементуемого слоя состоит из мелкокристаллического мартенсита, небольшого количества мелких карбонитридов и 25 – 30 % остаточного аустенита. Высокое содержание остаточного аустенита обеспечивает хорошую прирабатываемость деталей. Например, нешлифуемых автомобильных шестерен, что обеспечивает их бесшумную работу. Максимальная прочность нитроцементуемой детали достигается только при оптимальном содержании в поверхностном слое углерода и азота.

Нитроцементацию проводят для деталей сложной формы, склонных к короблению, и по сравнению с газовой цемента­цией она имеет следующие преимущества: более низкая тем­пература процесса и меньшее коробление изделий; выше сопротивление износу и коррозии. Процесс широко приме­няется на автотракторных заводах и все больше заменяет газовую цементацию. Например, на ВАЗе 95% деталей, проходящих химико-термическую обработку, подвергают нитроцементации.

Борирование – операция насыщения поверхностно­го слоя стали бором. Она обеспечивает высокую твердость, износостойкость и устойчивость против коррозии в различных средах. Этой операции можно подвергать любые стали, но углерод и легирующие элементы уменьшают глубину борированного слоя, которая обычно достигает 0,1 – 0,2 мм. В поверхностном слое образуется борид железа, а в подпо­верхностном – борид железа и альфа-твердый раствор. Твер­дость поверхности HV1800 – 2000 (более HRC72).

Борированию подвергают поверхности штампов для горячей штамповки, детали оборудования нефтяной и химической промышленности. Например, втулки грязевых нефтяных насосов для повышения их устойчивости против абразивного изнашивания.

 

6.3.2. Диффузионная металлизация

 

Насыщение поверхности стали элементами-металлами (алюминием, хромом и т. п.) называется диффузионной ме­таллизацией.

Алитирование – операция насыщения поверхности деталей алюминием для повышения их жаростойкости (окалиностойкости). При нагревании на поверхности детали образуется плотная пленка окиси алюминия, которая защи­щает основной металл от окисления. Жаростойкость алитированных деталей до 850 – 900°С. Твердость поверхности после алитирования возрастает до НВ400 – 450, износостой­кость слоя – низкая. Устранение хрупкости и выравнивание содержания алюминия в поверхностном и подповерхностном слоях достигаются диффузионным отжигом при температуре 950 – 1000°С в течение 3 – 5 ч.

Алитированию чаще подвергают детали из низкоуглеродистых, реже среднеуглеродистых, легированных сталей и чугунов (клапаны, лопатки турбин, трубы коллекторов, чехлы термопар и т. п.). Увеличение содержания углерода и легирующих элементов в стали понижает скорость диффузии алюминия, что увеличивает продолжительность процесса и снижает производительность. Эту операцию проводят в твердой, жидкой или газообразной среде. Глубина алитированного слоя 0,15 – 0,45 мм.

Хромирование – операция насыщения поверхностного слоя стали хромом для повышения коррозионной стой­кости, жаростойкости, а у средне- и высокоуглеродистых сталей при этом значительно повышаются твердость и изно­состойкость. Жаростойкость хромированной стали до 800°С. Глубина хромированного слоя 0,05 – 0,20 мм.

Хромируют стали с различным содержанием углерода. С увеличением его содержания диффузия хрома замедляется. При одинаковых режимах (температуре и выдержке) макси­мальная глубина слоя будет у низкоуглеродистой стали.

Антикоррозионными свойствами во многих средах (мор­ской воде, сернистых и углекислых газах) обладают хромиро­ванные слои любых сталей, но более устойчивы они у средне- и высокоуглеродистых, которые хорошо сопротивляются действию 20 %-ной соляной кислоты и 30 – 50 %-ной азотной кислоты.

Хромированию, подвергают детали паросилового обору­дования, пароводяной арматуры, a также детали, работаю­щие на износ в агрессивных средах (клапаны, вентили, втулки и т. п.).

Хромированный слой низкоуглеродистой стали – твердый раствор хрома в альфа-железе – обладает низкой твердо­стью (НВ180 – 200) и высокой пластичностью. Детали можно сгибать, осаживать, т. е. пластически деформировать.

У средне- и высокоуглеродистых сталей хромированный слой состоит преимущественно из карбидов хрома, поэтому его твердость высокая (HV1200 – 1300) до HRC72 и превос­ходит твердость азотированной и цементованной закаленной стали. Слой обладает высокой износоустойчивостью, но и повышенной хрупкостью, что является его основным недо­статком.

Силицирование – операция насыщения поверхно­стного слоя стали кремнием. Проводится для деталей, рабо­тающих в агрессивных средах, при высоких температурах и в условиях трения для оборудования нефтяной, химической и бумажной промышленности (детали насосов, арматура, па­трубки, винты).

Силицированные детали обладают высокой жаростойкостью (окалиностойкостью) – до 700 – 750°С и кислотоупорно­стью, так как образующаяся на поверхности окисная пленка кремния предохраняет металл от дальнейшего окисления и является стойкой к кислотам любой концентрации (азотной, серной, соляной) при их температуре до 100°С.

Несмотря на низкую твердость НВ270 (HV250 – 300) силицированный слой плохо обрабатывается режущими инструмен­тами, отличается пористостью, но обладает высокой износо­стойкостью после пропитки маслом при 170 – 200°С. Силицированные изделия можно деформировать и накатывать на них резьбу.

Наиболее широко применяется газовое силицирование порошковым методом. В рабочее пространство печи помеща­ют детали, засыпают их порошковым ферросилицием или карбидом кремния, нагревают до 950 – 1000°С и пропускают хлор. Образуется хлористый кремний. При контакте с поверхностью детали из него вытесняется атомарный кремний, диффун­дирующий в сталь. Процесс ведут в течение 2 – 5 ч. Силицированный слой толщиной 0,5 – 1,4 мм представляет собой твердый раствор, содержание кремния в котором до 14 %.

Кроме перечисленных операций химико-термической об­работки в машиностроении используются: диффузионное цинкование, титанирование, боралитирование, боросилицирование и другие операции многокомпонентного насыщения поверхности деталей несколькими металлами и металлоидами.

 


7. Легированные стали

 

Легированными называют стали, в состав которых специально вводятся химические элементы, называемые легирующими. К ним относятся: хром, никель, вольфрам, молибден, ванадий, титан и др.

Механические свойства никакой другой группы материалов не изменяются так сильно, путем добавления легирующих элементов и под воздействием процессов термообработки, как у сталей. Легированием стали (различными элементами в разных количествах) и применением термической обработки можно получить большую вязкость при одинаковой прочности по сравнению с углеродистой сталью, большую прочность и т. д.

Но преимущества легированных сталей заключается не только в более высоких механических свойствах. Легированием можно изменить и физико-химические свойства стали, получить сталь нержавеющую, кислотостойкую, жаропрочную, немагнитную, с особыми тепловыми и электрическими свойствами. Влияние легирующих элементов на сталь очень велико.

Все легирующие элементы сдвигают точки диаграммы состояния как по температуре, так и по концентрации, образуя стали с ферритной, аустенитной, перлитной, карбидной структурами. Очень большое влияние легирующие элементы оказывают на режимы термической обработки сталей, изменяя температуры отжига, закалки и отпуска.

Легирующие элементы разделяются на карбидообразующие: хром, молибден, ванадий, вольфрам, титан и др., которые могут находиться в твердом растворе, а при значительных количествах образовывать специальные карбиды. Карбиды легирующих элементов обладают более высокой твердостью, чем карбид железа – цементит. Не карбидообразующие: никель, кобальт, алюминий, медь и др., которые растворяясь в феррите или аустените значительно влияют на их свойства. Так никель придает стали высокую прочность и пластичность, повышает ударную вязкость, увеличивает прокаливаемость, понижает порог хладноломкости, уменьшает коэффициент теплового линейного расширения. Его большое содержание в стали обеспечивает аустенитную структуру при всех температурах.

 


Дата добавления: 2015-12-07; просмотров: 56 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.01 сек.)