Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Дәріс №9. Масс – спектрлік талдау

Читайте также:
  1. АУІПТІ ЖӘНЕ ЗИЯНДЫ ФАКТОРЛАРДЫ ТАЛДАУ
  2. Дәріс 10. Ғимараттардың тіліктерінің сызбалары.
  3. Дәріс 11. Баспалдақтар сызбалары.
  4. Дәріс 12. Ғимарат қасбеттерінің сызбалары
  5. Дәріс 13. Темірбетон бұйымдары мен конструкцияларының сызбалары
  6. Дәріс 1941-1956 ЖЫЛДАРДАҒЫ ҚАЗАҚ ӘДЕБИЕТІ
  7. Дәріс 2. Аксонометриялық проекциялар.

Молекулалар және атомдардың ионизациясы. Ионизация әдістері. Масс – спектрометр. Масс-анализатор. Ионды токтарды тіркеу. Талдаудың масс–спектрлік әдісі – әр түрлі элементтердің иондар ағынының, саны мен оның құрамына кіретін, электростатикалық және магнит өрісінің әсерінен газ күйіне бөліну қабілетіне негізделген, атомдар мен молекулалардың массаларын анықтау жолымен затты зерттеу әдісі. Электрлік көлденең өрісте зарядталған бөлшектің траекториясының қисықтық радиусы оның энергиясына тура және өріс кернеулігіне кері пропорционал. Демек, электрлік өріс энергия бойынша анализатор ретінде әсер етеді де, бі-рақ иондарды масса бойынша бөле алмайды. Магниттік өрісте заряд бөлшектің траекториясының қисықтық радиусы қозғалыс көлемінің моментіне тура пропорционал және өріс кернеулігіне кері пропорцио-нал.Электрлік және магниттік өрісті түйістіріп,массаның зарядқа (m/e) қатынасы арқылы иондар шоғын талдауға болады. Бұл принципте масс-спектрометрлік деп аталатын құралдардың құрылуы негізделген.

Зерттелінетін зат ең алдымен ионизацияға ұшырайды. Заттың күйіне байланысты (қатты дене, сұйық, газ, органикалық қосылыс және т.б.) ионизацияның келесі әдістері қолданылады: электрлік соққымен ионизациялау, фотоионизация, күшті электрлік өрістегі ионизация, беттік ионизация, ұшқын разряд (вакуумды ұшқын), лазер-лік сәулелену әсерінен болатын ионизация. Элементтерді анықтайтын саны теріске қарағанда үш ретке жоғары оң иондарды жиі қолданады.

Масс-спектрометр құрамында зерттелінетін затты дайындауға арналған құрылғыдан құралған, олар: иондық көз, мұнда бұл зат бөлшекті иондалады және иондық шоқтың қалыптасуы болады; иондардың масса бойынша бөлінуі (немесе ион массасының оның заряды шамасы бойынша қатынасы) жүретін масс-анализатор; иондық ток күшейтілетін және тіркелетін электрлік сигнал болып қалыптасатын иондық қабылдағыш. Тіркеуші құрылғыға иондардың саны (иондық тоқ) жөнінде ақпараттан өзге, анализатордан иондардың массасы туралы ақпарат түседі. Сонымен қатар иондық көз бен анализаторда, жоғарғы вакуум құрушы және ұстаушы электрлік қорек пен құрылғы жүйесі бар, оны кейде ЭЕМ-мен қосады.

Масс-спектр иондық токтың иондық массадан тәуелді иондық шыңдарға ие графикті құрайды. Әрбір шыңның биіктігі анықталатын элементтерге пропорционал.Типі бойынша масс-анализаторлар стати-калық және динамикалық болып бөлінеді. Статикалық масс-ана-лизаторларға біртекті магниттік өрістер жатады. Динамикалыққа: ұш-палы-уақытты, радиожиілікті, квадрапольді, фарвитронды, омегатрон-ды, магнитті резонанстық, циклотронды-резонансты және т.б жатады.

Фотографиялық тіркеу кезінде спектрографтың көмегімен фотопластинкадағы спектр өзімен жолақ серияларын көрсетеді, олардың әрқайсысы иондық шоққа иондық массасының оның белгілі бір зарядқа қатынасына сәйкес келеді. Сызықтар сериясы m/e қатынасы азаю бағытымен орналасады және әр жолақтың интенсивтілігі 10 есеге азаяды. Сапалы талдау кезінде спектрдегі үлгі сызықтары (m/e) қатынасы бойынша идентификациялынады. Сандық талдау кезінде микрофотометрдің көмегімен фотопленкада иондармен пайда болған сызықтардың қараю дәрежесін өлшейді. Градустау графиктерін қолдану арқылы элементтердің концентрациясын анықтайды. Фотографиялық тіркеудің кемшілігіне талдаудың ұзақтылығы жатады. Масс-спектрометрлік талдау әдісін метал-лургиялық зауыттарда төменгі құрамды қоспаларды сондай-ақ газ тәрізді және сұйық - ұшпалы өнімдерді анықтау мақсаттарында қолданады, мысалы, атмосфераға шығарылатын булар мен газдарды қадағалауда.

Рентгенді спектрлік талдау. Эмиссиялық, аймақтық (микрорентгенді спектрлік), флуорес-центрлік, абсорбциялық әдістер.

Рентгенді спектрлер әртүрлі заттардағы жеке элементтер құрамын анықтау үшін кеңінен қолданылады. Рентгенді спектрлік талдау химиялық әдістерге қарағанда үлгі құрамын анықтауды тездетуге және қажетті дәлдікті қамтамассыз етуге мүмкіндік береді.

Оптикалық спектрлік талдаумен салыстырғанда рентгенді спектрлік талдау артықшылықтарының қатарына рентгенді спектрлер аз сызықтардан тұратындығы; ішкі серия (К және L) сызықтарының өзара орналасуы барлық элементтерде дерлік бірдей; сипатталатын спектрдің толқын ұзындығы элементтің реттік номерінен тәуелді болуы жатады (Мозли заңы бойынша).

Рентгенді спектрлік талдаудың сенімділігі басқа аналогты әдістер сенімділігінен аз емес. Сезгіштігі жеткілікті жоғары элементтің минимал құрамы берілген аналогты әдіспен анықталады; ол рентгенді спектрлік талдау әдісінен және ауыр элементтерден жеңіл элементтерге көшу кезінде азаяды. Әдетте талдаудың сезгіштігі 0,1 - 0,001% құрайды, бірақ кейбір қолайлы жағдайларда 10-5 - 10-6 % сезгіштік табалдырығын алу мүмкіндігі болады. Қазіргі кезге дейін жеңіл элементтердің рентгенді спектрлік талдауды қолдану аймағы Z>11 атомдық номерімен шектелген. Енді берилий (Z = 4) және тіпті литийдің (Z = 3) құрамын талдауға мүмкіндік беретін құралдар бар.

Рентгенді спектрлік талдаудың кемшілігіне құралдың күрделілігі мен оның жоғары бағасын жатқызуға болады. Рентгенді спектрлік талдаудың үш түрлі әдісі бар: 1) эмиссиялық (бірінші сипат-тамалы спектрлер бойынша); 2) абсорбциялық (жұтылу спектрлері бойынша); флуроцентрлік (екінші сипаттамалы спектрлер бойынша).

Эмиссиялық әдіс. Бұл әдіспен рентгендік трубканың анодына орналастырған заттың спектрін зерттейді Затты электрондар шоқтарымен атқылағанда бірінші сипаттамалы сәулелену пайда болады. Ол саңылаудан өткен соң кристалдың (спектрограф немесе спектрометр) көмегімен спектрлерге ыдырайды және фотопленкада есептеуіш көмегімен тіркеледі. Сандық талдауды сыртқы және ішкі стандарттар әдісімен жүргізеді. Эмиссиялық әдіс жоғарғы сезімталдыққа 0,1-00,1% ие. Бірінші спектрлер бойынша сандық талдаудың қателігі анықталатын элементтің 2-5% құрайды. Бұл әдіспен зерттеу кезінде зерттелетін затты қыздырады, сондықтан тез жанғыш заттар талдауы, мысалы, күкірт пен селенді талдау қиындық тудырады.

Абсорбциялық әдіс. Бұл әдісті көбінесе сұйықтықтардағы салыстырмалы ауыр қоспаларды анықтауда қолданылады. Сұйықтықтарды рентгендік сәулелерді төмен жұтылу коэффициентті материалдан жасалған ойларға орналастырады (мысалы, плегсигланнан). Ой арқылы өткен рентгендік сәулелер шоқтарын спектрге ыдыратады. Талдау кезінде зат арқылы сәулелер өткендегі спектрдегі интенсивтіліктің өзгерісі зерттеледі. Талдаудың екі түрі бар: үзіліссіз спектрді жұтылу және сипаттамалы спектрді жұтылу әдісі. Абсорбциялық әдіс салыстырмалы төмен сезімталдыққа - 0,5-0,15% ие. Сандық талдаудың қателігі 10-5% құрайды.

Флуоресцентрлік әдіс. Флуоресцентрлік әдіс пен зерттеуде затты күшті рентгендік трубка анодына жақын жерге орналастырады. Трубкадан шығатын бірінші сәулелену зерттелетін заттың екінші сипаттамалы сәулесін қоздырады. Бұл сәулелену Соллер саңылауының көмегімен белгіленген параллельді шоқпен кристалға түседі де, кристал оны спектрге ыдыратады. Спектр әдетте газ разрядты немесе және сцинтилляциялық есептегіш көмегімен тіркеледі. Фотографиялық әдіс екінші ретті спектрлер интенсивтілігінің аздығынан қолданылмайды. Зерттелетін зат рентгендік трубкадан өзге жерде орналасқандықтан, талдауды жүргізуге жіберетін уақыт оптикалық талдау әдісімен зерттеуге кететін уақыттан көп емес. Обьек зерттеу кезінде қызбайды, жеңіл жаңғыш заттарды зерттеу мүмкіндігі бар. РФТ үлгінің бұзылуынсыз немесе ыдырауынсыз (қатты дене, сұйықтық, газ) бір уақытта ішкі және сыртқы стандарт әдістерімен көптеген элементтер (24-ке дейін) құрамын зерттеуге мүмкіндік береді. Талдауды автоматты құрылғыларда – жоғары өтімділікке ие рентгендік спектрометрлерде [4, C.28-34, 38-42] және квантометрлерде жүргізуге болады. Бұл әдіс өте жоғары 0,04-0,0005%-ға тең сезімталдыққа ие. РФТ-да кең қолданысқа ие, жарық күшінде едәуір ұтыс беретін кристалсыз рентгенофлуоресцентрлік аппараттары кіші қуатты миниатюрлы рентгендік трубканы немесе радиоизотопты көздерді қолдануға мүмкіндік береді. Кристалсыз анализаторларда әдетте селективті есептеу және селективті фильтрлеу деген екі әдіс қолданылады.

Жалпы қабылдауды 0,2 — 0,02% сезгіштігінде, микроауданы, бар жоғы 0,3 — 2 мкм3 – ді құрайтын химиялық құрамды анықтауға мүмкіндік беретін микрорентгенді спектрлік талдау алды. Осындай талдауды өткізуге мүмкіндік беретін құралдар микроанализаторлар деп аталады.

Ұсынылған әдебиеттер: Нег. 8 [13-28].

Бақылау сұрақтары

1. Пәннің мәні мен мақсаты.

2. Конструкторларды қалай әзірлейді?

3. Құрастыру әлiппесі не үшін керек?

4. Техниканың негiзгi тiлi дегеніміз не?

5 Бас конструктордың міндеттері.

 

 


Дата добавления: 2015-07-08; просмотров: 753 | Нарушение авторских прав


Читайте в этой же книге: Тапсырмалардың тізімі мен түрлері және оларды орындау кестесі | Модульдар бойынша және аралық аттестация өткізуге арналған сұрақтар тізімі. | Аралық аттестацияға арналған сұрақтар | Курстың тақырыптық жоспары | Дәріс №2. Термиялық талдау | Дәріс №3. Зерттеудің физикалық әдістері. Әдістердің жалпы классификациясы және сипаттамасы. | Дәріс №4. Дифракциялық әдістер. Құрылымдық кристаллографияның негіздері. | Дәріс №5. Рентген сәулелерінің физикасы | Дәріс №6. Рентгендік техника | Рентген құрылымдық талдаудың әдістері |
<== предыдущая страница | следующая страница ==>
Дәріс №7. Спектрлік әдістер| Дәріс №10. Резонансты әдістер

mybiblioteka.su - 2015-2024 год. (0.007 сек.)