Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. 8 страница



Второй постулат. При переходе атома из одного стационарного состояния в другое излучается или поглощается фотон, равной разности энергии стационарных состояний.

Третий постулат. В стационарном состоянии электрон может двигаться только по определенной орбите.

 


Физическая оптика. - Спектры и спектральные закономерности.

Исследование показало, что тип спектра определяется характером светящегося объекта.

Сплошные спектры получаются в результате свечения твердых или жидких тел. В пламени свечи светятся раскаленные частицы угля, в электрической лампочке — накаленная металлическая нить. Такие же спектры дают и расплавленные металлы, а также светящиеся газы или пары, если они обладают значительной плотностью, т. е. находятся под очень высоким давлением. В частности, сплошной спектр Солнца представляет собой, по-видимому, свечение паров высокой плотности.

Линейчатые и полосатые спектры характерны для свечения газов или паров малой плотности. Линейчатые спектры испускаются светящимися атомами. Многие газы состоят из отдельных атомов, например пары металлов и так называемые инертные газы — гелий, неон, аргон и др. Газы, состоящие из молекул, например водород, кислород, пар иода и др., могут при возбуждении распадаться на атомы (диссоциировать). Такие атомарные газы дают линейчатые спектры. Но можно вызвать свечение и целых молекул, не разбивая их на атомы. В таком случае испускаются полосатые спектры. При возбуждении таких многоатомных газов или паров нередко происходит частичная диссоциация и наблюдается одновременно и линейчатый и полосатый спектры.

Свечение атомов и молекул в парах и газах можно вызвать нагреванием. Например, в пламени газовой горелки можно наблюдать полосы, соответствующие свечению молекул циана, представляющих соединение углерода и азота (CN). Если в пламя внести крупинку поваренной соли (хлористого натрия, NaCl), то пламя окрашивается в интенсивный желтый цвет, и спектральный аппарат обнаруживает в желтой части спектра две близко расположенные линии, характерные для спектра паров натрия. Это означает, что в пламени горелки молекулы хлористого натрия распались на атомы натрия и хлора, свечение атомов натрия легко наблюдается, свечение же атомов хлора возбудить не легко, и оно обычно слишком слабо. Гораздо чаще для возбуждения спектров атомов и молекул пользуются явлениями электрического разряда в газах. В этом случае трубка с электродами, через которую пропускают электрический ток, наполняется газом при низком давлении.



В этих условиях разряд имеет характер тлеющего (см. т. II, § 100). Нередко трубке тлеющего разряда придают форму, указанную на рис. 325, с тем чтобы сконцентрировать свечение в узкой части, что удобно для освещения щели спектрографа. На этом рисунке 1 — электроды, 2 — узкая часть, где плотность тока (т. е. ток, рассчитанный на единицу площади) и яркость свечения имеют наибольшее значение. Для той же цели может служить электрическая искра или дуга между исследуемыми электродами.

Если повышать давление светящегося пара или газа, то спектральные линии начинают расширяться, захватывая
больший спектральный интервал. При очень больших давлениях (сотни и больше атмосфер) линейчатый спектр постепенно переходит в сплошной, характерный для сжатых газов.

 

Ла́зер (англ. laser, акроним от light amplification by stimulatedemission of radiation «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую,электрическую, тепловую, химическую и др.) в энергиюкогерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Физической основой работы лазера служитквантовомеханическое явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров нанеодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки итехники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза.

 


Дата добавления: 2015-11-04; просмотров: 21 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.006 сек.)







<== предыдущая лекция | следующая лекция ==>