Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. 3 страница



 

Входит в уравнение состояния идеального газа

p = {RT\over{V_\mu}}

.

 

Входит в формулу для коэффициента диффузии сферических броуновских частиц

D = \frac{R T}{6 N_A \pi a \xi }

 

В Международной системе единиц (СИ) универсальная газовая постоянная равна[3] ~R=\;8{,}3144621 \;\pm\; 0{,}0000075\; Дж⁄(моль∙К).

 

В системе СГС универсальная газовая постоянная равна ~R=\;8{,}3144621 \cdot 10^{7}\; Эрг⁄(моль∙К).

 

Удельная газовая постоянная (R/M) для сухого воздуха: ~R=\;287\; Дж⁄(кг∙К)

 

 

 

Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём или температура — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора, изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.

 

Расширение газов. Термический коэффициент давления

Определение термического коэффициента давленияРасширение газов происходит сложно, потому что могут изменяться и давление газа, и объем. Поэтому обычно сохраняют постоянным или объем, или давление. Если объем постоянен, то может быть введен термический коэффициент давления. Определение термического коэффи­циента давления при расширении можно описать формулой:

 

Дата: 3-12-2013, 13:32 Подробнее»

Объединенный газовый закон

График демонстрирующий закон ШарляТри закона для газов могут быть объединены в закон, известный как объединенный газовый закон:

pV/T = const или p1V1/T1 = p2V2/T2

При постоянной температуре Т1 = Т2 и p1V1 = p2V2 - закон Бойля. При постоянном объеме V1 = V2 и p1/T1 = p2/T2 - закон давления. При постоянном давлении p1 = р2 и V1/T1 = V2/T2 - закон Шарля.

 

Дата: 11-11-2013, 11:00 Подробнее»

Закон Шарля. Газовый термометр

Прибор для демонстрации закона давленияПрибор изображенный на рисунке и график из статьи "Закон давления", вместе могут быть использованы как термометр. Поместите колбу в жидкость, температура которой неизвестна, установите уровень ртути на отметке М и получите новое значение h.

Затем вы можете определить (Н + h) и считать значение температуры с графика. Измеряемая температура необязательно должна быть между 0 °С и 100 °С. Одним из очевидных недостатков этого прибора является его громоздкость.



 

Дата: 28-10-2013, 13:26 Подробнее»

Закон давления

График закона давленияДо сих пор рассматривалось поведение газа лишь при постоянной температуре. Давление в газе определяется изменением суммарного импульса при каждом столкновении и числом столкновений в каждую секунду — и то и другое прямо пропорционально скорости молекул, поэтому можно обоснованно заключить, что давление пропорционально квадрату скорости. Поскольку температура по Кельвину является мерой кинетической энергии газа, которая сама зависит от квадрата скорости, то мы можем ожидать, что р ~ Т до тех пор, пока объем газа остается постоянным.

 

Дата: 14-10-2013, 14:50 Подробнее»

Проверка закона Бойля

Проверка закона БойляВам понадобится прибор, показанный на рисунке. Подсоедините ножной насос через переходник и резиновый шланг к входной трубке прибора и с его помощью увеличьте внутреннее давление в приборе. Снимите по крайней мере 6-8 показаний через равные промежутки времени.

После каждого повышения давления дайте прибору остыть до комнатной температуры, прежде чем снять показания объема V и давления р.

 

Дата: 3-10-2013, 09:39 Подробнее»

Закон Бойля

Сила воздействия молекул в закрытом цилиндреЦилиндр, изображенный на рисунке, имеет плотно притертый поршень, под которым находится воздух. Когда поршень находится в покое, сила, действующая вверх, равна силе, действующей вниз. Когда на тарелочку помещается груз, поршень движется вниз и приходит в состояние покоя, тогда направленная вверх сила вновь уравнивается силой, направленной вниз (рис. б). Новая направленная вверх сила больше прежней. Общее число молекул в цилиндре неизменно, и, поскольку не было изменения температуры, они движутся с той же средней скоростью.

 

Испарение. Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с остальными молекулами. Испарение — это процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул. Испарение сопровождается охлаждением жидкости.

 

 

Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава[1].

 

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсация или десублимация.

 

В таблице приведены значения давления насыщенного пара для некоторых веществ:

 

 

Удельная теплота парообразования и конденсации — физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой 1 кг в пар без изменения температуры.

 

\,L= {\,Q \over m},

где \,L — удельная теплота парообразования.

 

Размерность удельной теплоты парообразования в СИ Дж/кг. Устаревшие, но иногда применяемые единицы для теплоты испарения — ккал/кг и кал/кг.

 

В химии теплота парообразования обычно приводится к молю вещества и при этом единица измерения её Дж/моль.

 

Удельная теплота парообразования некоторых веществ при нормальном атмосферном давлении (760 мм. рт. ст. = 101,325 кПа)[1]:

Все жидкости имеют ближний порядок в расположении молекул поэтому они имеют постоянный объём, незжимаемый и текучий.

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, сила, испытываемая молекулами жидкости на поверхности (сильнее всего на границе газ - жидкость) и направленная в глубину объема жидкости. Из-за поверхностного натяжения жидкость всегда принимает форму, соответствующую минимальной поверхности, в частности капля имеет сферическую форму.

Смачивание, капилярность.

Смачивание – Явление взаимодействия жидкости с твёрдым телом. КАПИЛЛЯРНОСТЬ, движение жидкости по узкому отверстию, вызванное поверхностным натяжением между жидкостью и окружающим ее материалом.

Твердое тело состоит из молекул. Твердое тело имеет кристалическую решетку, которая образована различными химическими связями (ионной, ковалентной, металической) твердые тела имеют объем и форму. Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава, или при конденсации паров на охлаждённую заметно ниже температуры плавления поверхность-подложку. Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости...

Жи́дкие криста́ллы (сокращённо ЖК; англ., LC) — это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе).

В результате действия приложенных к телу сил частицы, из которых оно состоит, перемещаются. Изменяются расстояния между атомами, их взаимное расположение. Это явление называют деформацией.

Если после прекращения действия силы тело возвращает свою первоначальную форму и объём, то такая деформация называется упругой, или обратимой. Сдавим кусочек пластилина. Свою первоначальную форму он не сможет вернуть, когда мы прекратим воздействовать на него. Он деформировался необратимо. Такую деформацию называют пластичной, или необратимой.

Необратимые деформации могут также происходить постепенно с течением времени, если на тело воздействует постоянная нагрузка, или под влиянием различных факторов в нём возникает механическое напряжение. Такие деформации называются деформациями ползучести.ают пластичной, или необратимой.

Зако́н Гу́ка — утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком.

Тепловым расширением называется эффект изменения размеров тела с изменением температуры при постоянном давлении. Это явление для твердых тел обусловлено несимметричностью потенциала взаимодействия атомов вещества в решетке, что приводит к ангармонизму колебаний атомов относительно среднего положения. Для газов это обусловлено увеличением кинетической энергии молекул и атомов.

Твердое тело состоит из молекул. Твердое тело имеет кристалическую решетку, которая образована различными химическими связями (ионной, ковалентной, металической) твердые тела имеют объем и форму. Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава, или при конденсации паров на охлаждённую заметно ниже температуры плавления поверхность-подложку. Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости...

Жи́дкие криста́ллы (сокращённо ЖК; англ., LC) — это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе).

Когда температура твердого тело достигает температуры плавления, кристаллическая решетка твердого вещества начинает разрушаться. Кристаллиза́ция — процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов.

Сублима́ция (возго́нка) — переход вещества из твёрдого состояния сразу в газообразное, минуя жидкое. Поскольку при возгонке изменяется удельный объём вещества и поглощается энергия (теплота сублимации), возгонка является фазовым переходом первого рода.

Внутренняя энергия — это кинетическая энергия хаотического (теплового) движения частиц системы (молекул, атомов, ядер, электронов) и потенциальная энергия взаимодействия этих частиц.

Внутренняя энергия идеального газа есть сумма кинетических энергий его частиц (энергией взаимодействия частиц пренебрегаем).

Существует два способа изменить внутреннюю энергию тела или системы тел. Первый способ – это совершение работы. Второй способ – теплопередача.

Если работу совершает само тело, то его внутренняя энергия уменьшается. Если работу совершают над телом, то внутренняя энергия тела увеличивается. При этом происходит превращение механической энергии во внутреннюю, или, наоборот, внутренней в механическую.

Если в результате теплопередачи тело остывает, то его внутренняя энергия уменьшается. Если же телу передается тепло, то его внутренняя энергия увеличивается.

Пример увеличения внутренней энергии тела за счет работы: сжатие газа (при этом он нагревается).

Пример уменьшения внутренней энергии тела за счет работы: расширение газа (при этом газ охлаждается).

Теплопередача представляет собой способ изменения внутренней энергии тела без совершения работы. При этом передающуюся энергию называют количеством теплоты (Q, Дж). Тело получает ровно то количество теплоты, которое ему отдает другое тело, т. е. теплопередача подчиняется закону сохранения энергии.

В любом случае изменение внутренней энергии тела отражается в изменении его температуры.

Изменение внутренней энергии тела за счет работы и теплопередачи может происходить в один и тот же момент времени, т. е. эти два способа работают совместно.

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем

 

Первый закон термодинамики:
дельта U = Q +A
1) Изменение внутренней энергии при переходе системы из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе.
2) Количество теплоты, переданное системе, идет на изменение внутренней энергии и работу системы над внешними телами.
Q = дельта U + A со штрихом
Применение:
1. Изохорный процесс.
V - const, A штрих = 0,
Q = дельта U.
2. Изотермический процесс.
T - const,
Q = A штрих
3. Изобарный процесс.
p - const,
Q = дельта U + A штрих

 

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяемая отношением бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT:

Единица измерения теплоёмкости в Международной системе единиц (СИ) — Дж/К.

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Массовая удельная теплоёмкость (С), также называемая просто удельной теплоёмкостью — это количество теплоты, которое необходимо подвести к единицемассы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг−1·К−1).

Объёмная теплоёмкость (С′) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м−3·К−1).

Молярная теплоёмкость (Сμ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).

 

Уравнение Теплового Баланса. Первый Закон Термодинамики

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных Qnи отданных Q0энергий равна нулю:

Полученная Qn и отданная Q0 теплоты численно равны, но Qn берется со знаком плюс, a Q0 - со знаком минус.

Итак, изменить внутреннюю энергию системы можно двумя способами: путем совершения работы (дельта U1 = A) и путем сообщения системе количества теплоты (дельта U2 = Q).

 

 

Адиабати́ческий, или адиаба́тный проце́сс (от др.-греч. ἀδιάβατος — «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке.

Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна. Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётся равновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только обратимые адиабатические процессы.

 

 

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разностьдавлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), которое совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

 

Виды тепловых двигателей Тепловые двигатели внешнего сгорания: 1. Двигатель Стирлинга - это тепловой аппарат, в котором газообразное или жидкое рабочее тело совершает движения в замкнутом пространстве. Это устройство основано на периодическом охлаждении и нагреве рабочего тела. При этом извлекается энергия, которая возникает при изменении объема рабочего тела. Двигатель Стирлинга может работать от любого источника тепла. 2. Паровые машины. Главный их плюс - это простота и отличные тяговые качества, на которые не влияет скорость работы. При этом можно обходиться без редуктора. Этим паровая машина отличается в лучшую сторону от двигателя внутреннего сгорания, выдающего на малых оборотах недостаточное количество мощности. По этой причине паровую машину удобно использовать в качестве тягового двигателя. Недостатки: низкий КПД, невысокая скорость, постоянный расход воды и топлива, большой вес. Раньше паровые машины были единственным двигателем. Но они требовали много топлива и замерзали зимой. Затем их постепенно вытеснили электродвигатели, ДВС, паровые турбины и газовые, которые обладают компактностью, более высоким КПД, универсальностью и эффективностью. Тепловые двигатели внутреннего сгорания: 1. ДВС (расшифровывается как двигатель внутреннего сгорания) - это двигатель, в процессе работы которого, часть сгорающего топлива преобразуется в механическую энергию. Поршневые ДВС различаются по виду топлива (газовые и жидкостные), по рабочему циклу (двух- и четырехтактные), по способу приготовления рабочей смеси (карбюраторные, дизели), по типу преобразования энергии (турбинные, комбинированные, поршневые и реактивные). Первый ДВС был придуман и создан Э. Ленуаром в 1860 году. Рабочий цикл состоит из четырех тактов, по этой причине этот двигатель еще называют четырехтактным. В настоящее время такой двигатель чаще всего встречается на автомобилях. 2. Роторный ДВС. В качестве примера можно привести электрическую тепловую станцию, работающую в базовом и пиковом режимах. Этот вид двигателя относительно прост и может быть создан в любых размерах. Вместо поршней используется ротор, вращающийся в специальной камере. В ней расположены впускные отверстия и выпускные, а также свеча зажигания. При таком типе конструкции четырехтактный цикл осуществляется без механизма газораспределения. В роторном ДВС можно использовать дешевое топливо. Также он практически не создает вибраций, дешевле и надежнее в производстве, чем поршневые тепловые двигатели. 3. Ракетные и реактивные тепловые двигатели. Суть этих устройств состоит в том, чтобы тяга создавалась не с помощью винта, а посредством отдачи выхлопных газов двигателя. Могут создавать тягу в пространстве без воздуха. Бывают твердотопливные, гибридные и жидкостные). И последний подвид - это турбовинтовые тепловые двигатели. Создание энергии происходит за счет винта и за счет отдачи газов выхлопных.

 

Расчет коэффициента полезного действия Пусть нагреватель приобрел извне энергию, равную Q1. Рабочее тело совершило работу A, при этом энергия, отданная холодильнику, составила Q2. Исходя из определения, рассчитаем величину КПД: η= A / Q1. Учтем, что А = Q1 - Q2. Отсюда КПД тепловой машины, формула которого имеет вид η= (Q1 - Q2)/ Q1 = 1 - Q2/ Q1, позволяет сделать следующие выводы: КПД не может превышать 1 (или 100%); для максимального увеличения этой величины необходимо либо повышение энергии, полученной от нагревателя, либо уменьшение энергии, отданной холодильнику; увеличения энергии нагревателя добиваются изменением качества топлива; уменьшения энергии, отданной холодильнику, позволяют добиться конструктивные особенности двигателей.

 

Первый закон термодинамики не устанавливает направление тепловых процессов. Однако, как показывает опыт, многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми. Например, при тепловом контакте двух тел с разными температурами тепловой поток всегда направлен от более теплого тела к более холодному. Никогда не наблюдается самопроизвольный процесс передачи тепла от тела с низкой температурой к телу с более высокой температурой. Следовательно, процесс теплообмена при конечной разности температур является необратимым

 

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов, которые могут происходить втермодинамических системах.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом, не доказываемым в рамках классической термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

 

Электролизация - это явление приобретения телом электрического заряда.

Электризация диэлектриков трением может возникнуть при соприкосновении двух разнородных веществ из-за различия атомных и молекулярных сил (из-за различия работы выхода электрона из материалов). При этом происходит перераспределение электронов (в жидкостях и газах ещё и ионов) с образованием на соприкасающихся поверхностях электрических слоёв с противоположными знаками электрических зарядов. Фактически атомы и молекулы одного вещества обладающие более сильным притяжением отрывают электроны от другого вещества.

Полученная разность потенциалов соприкасающихся поверхностей зависит от ряда факторов — диэлектрических свойств материалов, значения их взаимного давления при соприкосновении, влажности и температуры поверхностей этих тел, климатических условий. При последующем разделении этих тел каждое из них сохраняет свой электрический заряд, а с увеличением расстояния между ними за счет совершаемой работы по разделению зарядов, разность потенциалов возрастает и может достигнуть десятков и сотен киловольт.

Электрические разряды могут взаимно нейтрализоваться вследствие некоторой электропроводности влажного воздуха. При влажности воздуха более 85 % статическое электричество практически не возникает.

 

Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён взаконе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 Аза время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой9·109 H, то есть с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн

 

 

Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.

Формулировки

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

 

 

Электрическое поле — одна из двух компонент электромагнитного поля, представляющая собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающее при изменениимагнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Основным действием электрического поля является силовое воздействие на неподвижные относительно наблюдателя электрически заряженные тела или частицы. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

 

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда:

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря – разное в разных точках пространства), таким образом, - этовекторное поле. Формально это выражается в записи представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полемвектора магнитной индукции представляет собой электромагнитное поле[3], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется ввольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

* результат воздействия на частицу нескольких внешних сил есть просто сумма результатов воздействия каждой из сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что электростатический потенциал, создаваемый в данной точке системой зарядов, есть сумма потенциалов отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые, подчеркнём, полностью эквивалентны приведённой выше:

* Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
* Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.
* Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

 

На всякий заряд, находящийся в электрическом поле, действует сила, и поэтому при движении заряда в поле совершается определенная работа. Эта работа зависит от напряженности поля в разных точках и от перемещения заряда. Но если заряд описывает замкнутую кривую, т. е. возвращается в исходное положение, то совершаемая при этом работа равна нулю, как бы ни было сложно поле и по какой бы прихотливой кривой ни происходило движение заряда.

Это важное свойство электрического поля нужно несколько пояснить. Для этого рассмотрим сначала движение тела в поле силы тяжести. Работа, как мы знаем (см. том I), равна произведению силы на перемещение и на косинус угла между ними: A=Fs cosa. Если этот угол острый (a<90°), то работа положительна, если же угол тупой (a>90°), то работа отрицательна. В первом случае мы получаем работу за счет действия силы F, во втором — затрачиваем работу на преодоление этой силы. Представим себе, что в поле земного притяжения, т. е. в пространстве вблизи земной поверхности, где действует гравитационная сила притяжения к Земле, перемещается какое-нибудь. тело. Мы предполагаем, что при этом перемещении нет трения, так что тело не испытывает изменений состояния, которые могут сопровождаться изменениями его внутренней энергии: тело не нагревается, не распадается на части, не изменяет своего агрегатного состояния, не испытывает пластической деформации и т. д. В таком случае всякое перемещение тела в поле силы тяжести может сопровождаться лишь изменением потенциальной и кинетической энергии. Если тело опускается, то потенциальная энергия системы Земля — тело уменьшается, а кинетическая энергия тела соответственно увеличивается; наоборот, при подъеме тела происходит возрастание потенциальной энергии и одновременно уменьшение кинетической энергии. При этом полная механическая энергия, т. е. сумма потенциальной и кинетической, остается постоянной (см. том I) Как бы ни был сложен путь тела в поле силы тяжести (подъем и опускание по вертикальной, наклонной или криволинейной траектории, передвижение по горизонтальному направлению), но если в конце концов тело приходит в исходную точку, т. е. описывает замкнутый путь, то система Земля — тело возвращается в исходное положение и имеет ту же самую энергию, какой она обладала до начала перемещения тела. Это означает, что сумма положительных работ, совершенных силой тяжести при опускании тела, равна по модулю сумме отрицательных работ, совершенных силой тяжести на участках пути, соответствующих подъему тела. Поэтому алгебраическая сумма всех работ, совершаемых силой тяжести на отдельных участках пути, т. е. полная работа на замкнутом пути, равна нулю.


Дата добавления: 2015-11-04; просмотров: 26 | Нарушение авторских прав







mybiblioteka.su - 2015-2024 год. (0.024 сек.)







<== предыдущая лекция | следующая лекция ==>