Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Тема «Электродуговая сварка »



Тема «Электродуговая сварка»

Цель работы: изучить способы электродуговой сварки и сварочное оборудование. Приобрести практические навыки выполнения простейших сварочных работ.

Электродуговой сваркой называется процесс получения неразъемного соединения путём расплавления кромок соединяемых материалов за счёт тепла выделяемого при горении электрической дуги.

Способы электродуговой сварки можно классифицировать по розничным признакам, наиболее существенными из которых являются:


1)участие электрода в образовании сварного шва. Так (рис. 1), в практике сварки применяются неплавящиеся (рис. 1,а) и плавящиеся (рис. 1,б) электроды,

Рисунок 1 – Способы электродуговой сварки:

а – неплавящимся электродом (способ Бенардоса);

б – плавящимся электродом (способ Славянова);

в – сварки дугой косвенного действия;

г – сварка трехфазной дугой

 

2)схема питания электрической дуги (применяют постоянный или переменный ток, одно- и многофазной, низкой и высокой частоты);

3)использование средств механизации (ручная и автоматическая сварка),

4)способ защиты зоны сварки от воздействия воздуха (открытые, защищённые и закрытые). Защищённые сварочные дуги получают, окружая зону сварки активными или инертными газами, а также при сварке качественными электродами с обмазкой (рис. 2) .Наиболее эффективная защита достигается при погружении дуги в порошкообразные, стекловидные флюсы (рис. 3) (сварка закрытой дугой).


 

Рисунок 2 – Сварка электродом в обмазке:


1 – основной металл, 2 сварной шов, 3 – шлаковая корка, 4 – сварочная ванна, 5 – шлаковая ванна, 6 – газовая защитная атмосфера. 7 – стержень

 

Рисунок 3 – Автоматическая сварка под слоем флюса:

1 – токоподвод, 2 – механизм подачи, 3 – электродная проволока, 4 – ванна жидкого шлака, 5 – слой флюса, 6 – твердая шлаковая корка, 7 – сварной шов, 8 – основной металл, 9 – металлическая ванна жидкого металла, 10 – дуга

 

Электрическая сварочная дуга представляет собой мощный электрический разряд в газовой среде. Газ проводит электрический ток только при наличии в нём заряженных частиц – ионов и электронов, и в этом случае его называют ионизированным.

Для возбуждения дуги при невысоких напряжениях (55 – 65В), применяемых при сварке, электродом прикасаются к поверхности детали (рис. 2), замыкая этим накоротко цепь сварочного тока. Благодаря наличию высокого переходного сопротивления в месте соприкосновения происходит выделение значительного количества тепла, обеспечивающего интенсивный разогрев электродов, необходимый для эмиссии электронов. При разведении электродов, течение тока не прекращается - возбуждается дуга (рис. 4). Конец отрицательного электрода (катод) излучает поток электронов, которые под влиянием электрического поля устремляются к аноду. Эмиссия электронов от ка

 
 

тода приводит к ионизации газа, в результате соударений электронов с моле
 
 

кулами газа.



 

Рисунок 4 – Схема процесса зажигания дуги при сварке

(а – короткое замыкание, б – после отвода электрода, в – устойчивый дуговой разряд):

1 – электрод, 2 – основной металл, 3 – электроны, 4 – ионы, 5 – катодное пятно, 6 – столб дуги, 7 – анодное пятно

 

Взаимная бомбардировка катода положительными ионами и анода отрицательными частицами, приводит к переходу кинетической энергии частиц в тепловую, сопровождающуюся расплавлением конца электрода и основного металла. Температура дуги в центре достигает 6000 – 7000°С (рис 4,в). Электрические параметры дуги изменяются от 1 до 3000 А и от 10 до 70 В. Соответственно мощность дуги изменяется от 0.01 до 150 кВт, т.е. в 15000 раз. Это позволяет сваривать металлы от очень малых до больших толщин. Электрические свойства дуги выражаются статической вольтамперной характеристикой, представляющей собой зависимость между напряжением и током в установившемся дуговом разряде (рис. 5,а). Статическую характеристику дуги можно разделить на три участка. На участке I характеристика падающая, на II – жёсткая, на III – возрастающая.


 

Рисунок 5 – Статическая вольтамперная характеристика дуги (а) и зависимость напряжения дуги Uд от ее длины Lд (б)

 

Самое широкое применение имеет дуга с жесткой характеристикой (т.е. на участке, где напряжение дуги не зависит от тока). Существует пропорциональная зависимость напряжения дуги от её длины (рис. 5,б) Аналитически она выражается формулой:

Uд = α + βLд

где Uд – напряжение дуги, В;

L – длина дуги, мм;

α, β – опытные коэффициенты, зависящие от рода металла и вида газа в дуговом промежутке (для стальных электродов α=10в, β=2 В/мм).

 

Для зажигания дуги при использовании стальных электродов достаточно напряжение 45 – 50 В, а угольных электродов - 55 – 65 В. После зажигании электрической дуги напряжение падает до 15 – 20 В (стальные электроды) и 30 – 40 В (угольные электроды). Загрязнение поверхности изделия маслом, краской и т п. ухудшает стабильность горения дуги. Для увеличения устойчивости горения дуги применяют осцилляторы трансформирующие промышленный ток в частоту 106 Гц и напряжение 2500-3000 В. Другой путь – это введение в состав электродных покрытий солей щелочных или щелочноземельных металлов (мела, поташа в др.), которые повышают степень ионизации дугового промежутка.

Для питания сварочной дуги применяют специальные источники постоянного и переменного тока. К источникам постоянного тока относятся однопостовые сварочные генераторы, выпрямители, аккумуляторы. К источникам переменного тока – трансформаторы.

Широко распространены сварочные трансформаторы типа СТЭ рис 6. СТН рис. 7.


Рисунок 6 – Схема сварочного аппарата СТЭ-34:

1 – понижающий трансформатор, 2 – регулятор тока (а – неподвижная часть, б – подвижная часть регулятора), 3 – зазор магнитопровода

Рисунок 7 – Схема сварочного трансформатора СТН:

1 – первичная обмотка, 2 – вторичная обмотка, 3 – реактивная обмотка, С – регулирующий пакет магнитопровода

Источники тока для обычных целей (например освещения), имеют внешнюю характеристику приближающуюся к прямой (рис. 8, а) независимо от изменения нагрузки. Для случая питания сварочной дуги применяют источники, имеющие падающую внешнюю характеристику (рис. 8, б).

Зависимость напряжения источника от силы тока обеспечивает взаимосвязь ее с характеристикой дуги (рис. 5). Источник сварочного тока должен регулироваться плавно или ступенчато.

Сварочный агрегат, например СТЭ-34, состоит из понижающего трансформатора 1 (рис. 6), индукционного регулятора (дросселя) 2 и электродержателя с проводами. Трансформаторы выполняются на напряжение в первичной обмотке 1 – 220 или 380 В и во вторичной на холостом ходе 60 – 65 В. Магнитопровод 1 трансформатора набран из листовой электротехнической стали, который способствует возникновению высокой напряженности магнитного поля при прохождении тока через первичную обмотку. Так как переменный ток меняет свою полярность 50 раз в секунду, то и образованное им магнитное поле меняется с той же частотой. При пересечении магнитным полем витков вторичной обмотки I в них индуктируется Э.Д.С., обеспечивающего сварочный ток. Величина сварочного тока регулируется дросселем 2, который служит также для получения падающей характеристики источника тока и повышает устойчивость горения дуги. Величина тока регулируется путём изменения магнитного сопротивления (индуктивности), за счёт перемещения подвижной части магнитопровода, т.е. изменение зазора (S). С увеличением воздушного зазора (S) сварочный ток возрастает, т к. уменьшается магнитное сопротивление дросселя.

Сварка постоянным током может осуществляться в полевых условиях при отсутствии силовой электрической сети. На рис. 9 представлены схемы сварочных генератором постоянного тока с самовозбуждением.


Рисунок 9 – Схема сварочного генератора с самовозбуждением с параллельной намагничивающей и последовательной размагничивающей обмотками возбуждения:

1 – якорь, 2 и 3 – обмотки возбуждения, а и в – главные щетки, с – вспомогательная щетка, R – реостат, Фн– намагничивающий поток,

Фр – размагничивающий поток

 

В генераторе обмотки 1 и 2 (рис. 9) включены таким образом, что создаваемые ими магнитные потоки направлены навстречу друг другу. При этом намагничивающий поток Фн не зависит от нагрузки, а размагничивающий поток Фр – возрастает по мере увеличения сварочного тока. В результате взаимодействия магнитных потоков генератор имеет падающую внешнюю характеристику. Регулировка осуществляется за счёт смещения щёток по коллектору.

Электроды представляют собой металлические прутки диаметром от 1 до 12 мм и длимой 350-450 мм. Практически используются электроды диаметром 2 – 6 мм для сварки деталей различной толщины, электродами диаметром 2 мм сваривают детали толщиной до 2 мм, диаметром 3 мм – детали толщиной 2 – 5 мм, диаметром 4 – 5 мм – детали толщиной 5 – 10 мм, диаметром 5 – 8 мм – детали толщиной свыше 10 мм. Поверхность электродов покрывают обмазкой, которая в процессе сварки образует шлак, защищающий расплавленный металл от взаимодействия с кислородом и азотом воздуха и для повышения устойчивости горения электрической дуги. Наиболее распространенными марками высококачественных электродов для сварки малоуглеродистых сталей являются ОММ-5, АНО, УОНИ-13. Состав обмазки ОММ-5 – 37% титанового концентрата, 2% марганцевой руды, I3 % – полевого шпата, 20% – ферромарганца, 9 % – крахмала, 30% – жидкого стекла.

Нанесение покрытия производится либо окунанием в электродную ванну с жидкой массой, либо на специальных прессах.

Сварочный пост (рис. 10) для ручной электродуговой сварки должен иметь следующее оборудование: распределительный щит, сварочный агрегат, рабочий стол, кабину или ширму, молоток, щётку, плоскогубцы, гибкий кабель для подвода тока, электроды. Сварщика необходимо обеспечить спецодеждой: брезентовым костюмом и рукавицами, сапогами и предохранительным щитком (шлемом) со специальными темными стёклами для защиты глаз и лица от действия инфракрасных и ультрафиолетовых лучей, излучаемых электрической дугой.


Рисунок 10 – Общий вид стационарного поста для ручной дуговой сварки:

1 – источник сварочного тока, 2 – сварочный стол, 3 – газоотсос, 4 – электрододержатель, 5 – ящик для инструмента, 6 – ящик для электродов

Режим электродуговой сварки зависит от диаметра электрода и величины сварочного тока. Выбор величины сварочного тока производится в зависимости от диаметра, марки электрода и его положения в пространстве, толщины и состава свариваемого материала, рода тока и типа соединения. С увеличением толщины свариваемого материала соответственно увеличивается и сила тока.

Зависимость между силой тока и диаметром электрода выражается уравнением:

I=к dэ

 

где I - сила тока при сварке. А;

к – коэффициент;

dэ - диаметр электрода, мм

 

Коэффициент К для сварки малоуглеродистой стали металлическим электродом составляет 40 – 50, для сварки высоколегированной стали 25 – 40, угольным электродом 5 – 8 и графитовым 18 – 22 А/мм.

Различают следующие типы сварных соединений (рис. 11): стыковые (I), нахлесточные (II), тавровые (III), угловые (IV).

По расположению шва а пространстве различают нижние, вертикальные и потолочные (рис. 11 – У,1У).

Для получения качественной сварки необходимо дугу поддерживать более короткой, так как при длинной дуге наблюдается сильное разбрызгивание металла и около шва появляется много крупных капель расплавленного металла. Шов получается неровным, с большим количеством включений окислов, вследствие чего качество металла шва ухудшается.

Техника наложения валика зависит от сечения свариваемых изделий: при малом сечении (> 3 им) получают узкий валик путем перемещения электрода вдоль линии сварки, при сечении более 3 ми получают широкий или уширенный валик. Практически ширина валика равна 2,5 диаметра электрода. Угол наклона электрода к изделию равен 15 – 30 °.

Дли получения качественной сварки необходимо:

1) тщательно очистить свариваемые поверхности;

2)правильно подобрать силу сварочного тока,

3) поддерживать короткую дугу;

4) поддерживать правильную и равномерную скорость подачи электрода вдоль линии сварки и осуществлять им поперечные колебательные движения;

5) выдерживать угол наклона электрода к изделию.

 

 

Порядок выполнения работы

1. Ознакомиться с правилами техники безопасности сварочных работ.

2. Изучить особенности процесса электродуговой сварки, оборудование и режимы процесса. Основные положения работы записать в отчет.

3. Освоить технологию сварки заготовок из малоуглеродистой стали.

 

Вопросы для самоконтроля

1.Как зажигается электрическая дуга?

2.Что представляет собой статическая вольтамперная характеристика дуги?

3.Как зависит напряжение электрической дуги от тока и длины дуги?

4.Назовите основные источники питания электрической дуги?

5.Чем отличается внешняя характеристика источника тока?

6.Опишите основные узлы сварочного агрегата СТЭ-34?

7.Опишите принцип работы сварочного генератора с самовозбуждением?

8.С какой целью электроды покрывают обмазкой?

9. Каковы типоразмеры электродов для сварки?

10. Как зависит ток дуги от диаметра электрода?

11.Перечислите основные типы сварных соединений.

12.Как классифицируют швы по расположению в пространстве?

 


Дата добавления: 2015-10-21; просмотров: 37 | Нарушение авторских прав




<== предыдущая лекция | следующая лекция ==>
В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: | 

mybiblioteka.su - 2015-2024 год. (0.017 сек.)